Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 21(1): 193, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37697385

ABSTRACT

BACKGROUND: Prefoldin is an evolutionarily conserved co-chaperone of the tailless complex polypeptide 1 ring complex (TRiC)/chaperonin containing tailless complex 1 (CCT). The prefoldin complex consists of six subunits that are known to transfer newly produced cytoskeletal proteins to TRiC/CCT for folding polypeptides. Prefoldin function was recently linked to the maintenance of protein homeostasis, suggesting a more general function of the co-chaperone during cellular stress conditions. Prefoldin acts in an adenosine triphosphate (ATP)-independent manner, making it a suitable candidate to operate during stress conditions, such as mitochondrial dysfunction. Mitochondrial function depends on the production of mitochondrial proteins in the cytosol. Mechanisms that sustain cytosolic protein homeostasis are vital for the quality control of proteins destined for the organelle and such mechanisms among others include chaperones. RESULTS: We analyzed consequences of the loss of prefoldin subunits on the cell proliferation and survival of Saccharomyces cerevisiae upon exposure to various cellular stress conditions. We found that prefoldin subunits support cell growth under heat stress. Moreover, prefoldin facilitates the growth of cells under respiratory growth conditions. We showed that mitochondrial morphology and abundance of some respiratory chain complexes was supported by the prefoldin 2 (Pfd2/Gim4) subunit. We also found that Pfd2 interacts with Tom70, a receptor of mitochondrial precursor proteins that are targeted into mitochondria. CONCLUSIONS: Our findings link the cytosolic prefoldin complex to mitochondrial function. Loss of the prefoldin complex subunit Pfd2 results in adaptive cellular responses on the proteome level under physiological conditions suggesting a continuous need of Pfd2 for maintenance of cellular homeostasis. Within this framework, Pfd2 might support mitochondrial function directly as part of the cytosolic quality control system of mitochondrial proteins or indirectly as a component of the protein homeostasis network.


Subject(s)
Mitochondria , Mitochondrial Membranes , Cytosol , Mitochondrial Proteins/genetics
2.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456936

ABSTRACT

Photodynamic therapy (PDT) is a valuable treatment method for vulvar intraepithelial neoplasia (VIN). It allows for the treatment of a multifocal disease with minimal tissue destruction. 5-Aminolevulinic acid (5-ALA) is the most commonly used prodrug, which is converted in the heme pathway to protoporphyrin IX (PpIX), an actual photosensitizer (PS). Unfortunately, not all patients treated with PDT undergo complete remission. The main cause of their failure is resistance to anticancer therapy. In many cancers, resistance to various anticancer treatments is correlated with increased activity of the DNA repair protein apurinic/apyrimidinic endonuclease 1 (APE1). Enhanced activity of drug pumps may also affect the effectiveness of therapy. To investigate whether multidrug resistance mechanisms underlie PDT resistance in VIN, porphyrins were isolated from sensitive and resistant vulvar cancer cells and their culture media. APE1 activity was measured, and survival assay after PDT combined with APE1 inhibitor was performed. Our results revealed that resistant cells accumulated and effluxed less porphyrins than sensitive cells, and in response to PDT, resistant cells increased APE1 activity. Moreover, PDT combined with inhibition of APE1 significantly decreased the survival of PDT-resistant cells. This means that resistance to PDT in vulvar cancer may be the result of alterations in the heme synthesis pathway. Moreover, increased APE1 activity may be essential for the repair of PDT-mediated DNA damage, and inhibition of APE1 activity may increase the efficacy of PDT.


Subject(s)
Photochemotherapy , Vulvar Neoplasms , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Female , Heme/therapeutic use , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Protoporphyrins/therapeutic use , Vulvar Neoplasms/drug therapy
3.
DNA Repair (Amst) ; 104: 103136, 2021 08.
Article in English | MEDLINE | ID: mdl-34044336

ABSTRACT

Photodynamic therapy (PDT) is a clinically approved cancer therapy of low invasiveness. The therapeutic procedure involves administering a photosensitizing drug (PS), which is then activated with monochromatic light of a specific wavelength. The photochemical reaction produces highly toxic oxygen species. The development of resistance to PDT in some cancer cells is its main limitation. Several mechanisms are known to be involved in the development of cellular defense against cytotoxic effects of PDT, including activation of antioxidant enzymes, drug efflux pumps, degradation of PS, and overexpression of protein chaperons. Another putative factor that plays an important role in the development of resistance of cancer cells to PDT seems to be DNA repair; however, it has not been well studied so far. To explore the role of DNA repair and other potential novel mechanisms associated with the resistance to PDT in the glioblastoma cells, cells stably resistant to PDT were isolated from PDT sensitive cells following repetitive PDT cycles. Duly characterization of isolated PDT-resistant glioblastoma revealed that the resistance to PDT might be a consequence of several mechanisms, including higher repair efficiency of oxidative DNA damage and repair of DNA breaks. Higher activity of APE1 endonuclease and increased expression and activation of DNA damage kinase ATM was demonstrated in the U-87 MGR cell line, suggesting and proving that they are good targets for sensitization of resistant cells to PDT.


Subject(s)
DNA Damage , DNA Repair , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Photochemotherapy , Cell Line, Tumor , Comet Assay , DNA Breaks , DNA, Neoplasm/metabolism , Glioblastoma/genetics , Glioblastoma/physiopathology , Humans , Oxidative Stress
4.
Front Cell Dev Biol ; 9: 816214, 2021.
Article in English | MEDLINE | ID: mdl-35111762

ABSTRACT

Cellular functions are largely performed by proteins. Defects in the production, folding, or removal of proteins from the cell lead to perturbations in cellular functions that can result in pathological conditions for the organism. In cells, molecular chaperones are part of a network of surveillance mechanisms that maintains a functional proteome. Chaperones are involved in the folding of newly synthesized polypeptides and assist in refolding misfolded proteins and guiding proteins for degradation. The present review focuses on the molecular co-chaperone prefoldin. Its canonical function in eukaryotes involves the transfer of newly synthesized polypeptides of cytoskeletal proteins to the tailless complex polypeptide 1 ring complex (TRiC/CCT) chaperonin which assists folding of the polypeptide chain in an energy-dependent manner. The canonical function of prefoldin is well established, but recent research suggests its broader function in the maintenance of protein homeostasis under physiological and pathological conditions. Interestingly, non-canonical functions were identified for the prefoldin complex and also for its individual subunits. We discuss the latest findings on the prefoldin complex and its subunits in the regulation of transcription and proteasome-dependent protein degradation and its role in neurological diseases, cancer, viral infections and rare anomalies.

5.
Genes (Basel) ; 11(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260587

ABSTRACT

Translation is a core process of cellular protein homeostasis and, thus, needs to be tightly regulated. The production of newly synthesized proteins adapts to the current needs of the cell, including the response to conditions of oxidative stress. Overall protein synthesis decreases upon oxidative stress. However, the selective production of proteins is initiated to help neutralize stress conditions. In contrast to higher eukaryotes, fungi require three translation elongation factors, eEF1, eEF2, and eEF3, for protein synthesis. eEF1 and eEF2 are evolutionarily conserved, but they alone are insufficient for the translation elongation process. eEF3 is encoded by two paralogous genes, YEF3 and HEF3. However, only YEF3 is essential in yeast, whereas the function of HEF3 remains unknown. To elucidate the cellular function of Hef3p, we used cells that were depleted of HEF3 and treated with H2O2 and analyzed the growth of yeast, global protein production, and protein levels. We found that HEF3 is necessary to withstand oxidative stress conditions, suggesting that Hef3p is involved in the selective production of proteins that are necessary for defense against reactive oxygen species.


Subject(s)
Oxidative Stress , Peptide Elongation Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Peptide Elongation Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
6.
Article in English | MEDLINE | ID: mdl-32265045

ABSTRACT

Professor Barbara Tudek received the Frits Sobels Award in 2019 from the European Environmental Mutagenesis and Genomics Society (EEMGS). This article presents her outstanding character and most important lines of research. The focus of her studies covered alkylative and oxidative damage to DNA bases, in particular mutagenic and carcinogenic properties of purines with an open imidazole ring and 8-oxo-7,8-dihydroguanine (8-oxoGua). They also included analysis of mutagenic properties and pathways for the repair of DNA adducts of lipid peroxidation (LPO) products arising in large quantities during inflammation. Professor Tudek did all of this in the hope of deciphering the mechanisms of DNA damage removal, in particular by the base excision repair (BER) pathway. Some lines of research aimed at discovering factors that can modulate the activity of DNA damage repair in hope to enhance existing anti-cancer therapies. The group's ongoing research aims at deciphering the resistance mechanisms of cancer cell lines acquired following prolonged exposure to photodynamic therapy (PDT) and the possibility of re-sensitizing cells to PDT in order to increase the application of this minimally invasive therapeutic method.


Subject(s)
Carcinogenesis/metabolism , DNA Repair , Guanine/analogs & derivatives , Neoplasms/history , Photochemotherapy/history , Radiation-Sensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Damage , Guanine/metabolism , History, 20th Century , History, 21st Century , Humans , Lipid Peroxidation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Photochemotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...