Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(1): 102794, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38133957

ABSTRACT

Force generation is an essential property of skeletal muscle models in vitro. We describe a versatile 1-step procedure to direct undifferentiated human pluripotent stem cells (PSCs) into contractile skeletal muscle organoids (SMOs). Our protocol provides detailed steps for 3D casting of PSCs using either collagen-I/Matrigel- or fibrin/Geltrex-based hydrogels, SMO differentiation, and application of different culture platforms for mechanical loading and contractility analysis. The SMO model may be particularly useful to study human muscle development and developmental skeletal muscle disorders in vitro. For complete details on the use and execution of this protocol, please refer to Shahriyari et al.1.


Subject(s)
Organoids , Pluripotent Stem Cells , Humans , Muscle, Skeletal , Cell Differentiation
2.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Article in English | MEDLINE | ID: mdl-36254806

ABSTRACT

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Subject(s)
Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Humans , Muscular Dystrophy, Duchenne/genetics , Muscle, Skeletal/metabolism , Muscle Development/genetics , Satellite Cells, Skeletal Muscle/metabolism , Muscle Fibers, Skeletal/metabolism
3.
Cells ; 11(7)2022 04 05.
Article in English | MEDLINE | ID: mdl-35406795

ABSTRACT

Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.


Subject(s)
Neuromuscular Diseases , Organoids , Coculture Techniques , Drug Development , Humans , Muscle Cells , Neuromuscular Diseases/drug therapy
4.
Cytokine ; 106: 1-11, 2018 06.
Article in English | MEDLINE | ID: mdl-29501710

ABSTRACT

The self-renewal capacity of germline derived stem cells (GSCs) makes them an ideal source for research and use in clinics. Despite the presence of active gene network similarities between embryonic stem cells (ESCs) and GSCs, there are unanswered questions regarding the roles of evolutionary conserved genes in GSCs. To determine the reprogramming potential of germ cell- specific genes, we designed a polycistronic gene cassette expressing Stella, Oct4 and Nanos2 in a lentiviral-based vector. Deep transcriptome analysis showed the activation of a set of pluripotency and germ-cell-specific markers and the downregulation of innate immune system. The global shut down of antiviral genes included MHC class I, interferon response genes and dsRNA 2'-5'-oligoadenylate synthetase are critical pathways that has been affected . Individual expression of each factor highlighted suppressive effect of Nanos2 on genes such as Isg15 and Oasl2. Collectively, to our knowledge this is the first report showing that Nanos2 could be considered as an immunosuppressive factor. Furthermore, our results demonstrate suppression of endogenous retrotransposons that harbor immune response but further analysis require to uncover the correlation between transposon suppression and immune response in germ cell development.


Subject(s)
Embryo, Mammalian/cytology , Fibroblasts/metabolism , Immunity, Innate/genetics , Octamer Transcription Factor-3/metabolism , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Animals , Cellular Reprogramming , Chromosomal Proteins, Non-Histone , DNA Transposable Elements/genetics , Down-Regulation/genetics , Endogenous Retroviruses/metabolism , Gene Regulatory Networks , HEK293 Cells , Humans , Mice, Inbred BALB C , Models, Biological , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics
5.
Cell Adh Migr ; 12(2): 118-126, 2018 03 04.
Article in English | MEDLINE | ID: mdl-29466916

ABSTRACT

Use of mesenchymal stem cells (MSCs) has been introduced as a promising tool, for structural and functional recovery of damaged tissues/organs. Studies have indicated that interactions between chemokine receptors and their ligands have a critical role in homing of MSCs to the site of injury. Although CXCR4 variants have been characterized, the exact role of each transcript in homing has remained unclear. In this study, cells were pretreated with various hypoxia-mimicking compounds (valproic acid, cobalt-chloride, and deferoxamine mesylate). Results indicated that both variants of CXCR4 were overexpressed after 24 hours of treatments and their expression could cooperatively induce and promote the cell migration. Moreover, deferoxamine mesylate was more effective in overexpression of variant A (lo), which resulted in higher level of CXCR4 protein and the highest rate of migration of the cells. In conclusion, our findings may have important potential implications in clinical applications, reinforcing the concept that manipulating the expression of specific CXCR4 variants may increase migration of MSCs.


Subject(s)
Mesenchymal Stem Cells/metabolism , Receptors, CXCR4/metabolism , Cell Movement/drug effects , Deferoxamine/pharmacology , Female , Humans , Mesenchymal Stem Cells/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Valproic Acid/pharmacology
6.
Biochem Biophys Res Commun ; 480(4): 635-640, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27794480

ABSTRACT

Germline stem cells (GSCs) are attractive biological models because of their strict control on pluripotency gene expression, and their potential for huge epigenetic changes in a short period of time. Few data exists on the cooperative impact of GSC-specific genes on differentiated cells. In this study, we over-expressed 3 GSC-specific markers, STELLA, OCT4 and NANOS2, collectively designated as (SON), using the novel polycistronic lentiviral gene construct FUM-FD, in HEK293T cells and evaluated promoter activity of the Stra8 GSC marker gene We could show that HEK293T cells expressed pluripotency and GSC markers following ectopic expression of the SON genes. We also found induction of pluripotency markers after serum starvation in non-transduced HEK293T cells. Expression profiling of SON-expressing and serum-starved cells at mRNA and protein level showed the potential of SON factors and serum starvation in the induction of ESRRB, NANOG, OCT4 and REX1 expression. Additionally, the data indicated that the mouse Stra8 promoter could only be activated in a subpopulation of HEK293T cells, regardless of SON gene expression. We conclude that heterogeneous population of the HEK293T cells might be easily shifted towards expression of the pluripotency markers by ectopic expression of the SON factors or by growth in serum depleted media.


Subject(s)
Cellular Reprogramming Techniques/methods , HEK293 Cells/cytology , HEK293 Cells/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Proteins/metabolism , RNA-Binding Proteins/metabolism , Cell Differentiation/physiology , Chromosomal Proteins, Non-Histone , Humans , Pluripotent Stem Cells/metabolism
7.
Cell Reprogram ; 18(5): 333-343, 2016 10.
Article in English | MEDLINE | ID: mdl-27602600

ABSTRACT

Cell Stemness can be achieved by various reprogramming techniques namely, somatic cell nuclear transfer, cell fusion, cell extracts, and introduction of transcription factors from which induced pluripotent stem cells (iPSCs) are obtained. iPSCs are valuable cell sources for drug screening and human disease modeling. Alternatives to virus-based introduction of transcription factors include application of DNA-free methods and introduction of chemically defined culturing conditions. However, the possibility of tumor development is still a hurdle. By taking advantage of NTERA-2 cells, a human embryonal carcinoma cell line, we obtained partially differentiated cells and examined the dedifferentiation capacity of regenerative tissue from rabbit ears. Results indicated that treatment of partially differentiated NTERA-2 cells with the regenerating tissue-conditioned medium (CM) induced expression of key pluripotency markers as examined by real-time polymerase chain reaction, flow cytometry, and immunocytochemistry techniques. In this study, it is reported for the first time that the CM obtained from rabbit regenerating tissue contains dedifferentiation factors, taking cells back to the pluripotency. This system could be a simple and efficient way to reprogram the differentiated cells and generate iPSCs for clinical applications as this system is not accompanied by any viral vector, and reprograms the cells within 10 days of treatment. The results may convince the genomic experts to study the unknown signaling pathways involved in the dedifferentiation by regenerating tissue-CM to authenticate the reprogramming model.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Regeneration/physiology , Animals , Cells, Cultured , Male , Nuclear Transfer Techniques , Rabbits , Transcription Factors/metabolism
8.
Iran J Basic Med Sci ; 19(1): 14-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27096059

ABSTRACT

OBJECTIVES: The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a few passages which influence their therapeutic applications negatively. This study investigated whether treatment of BM-MSCs with hypoxia-mimicking agents would increase expression of some chemokine receptors and cell migration. MATERIALS AND METHODS: BM-MSCs were treated at passage 2 for our gene expression profiling. All qPCR experiments were performed by SYBR Green method in CFX-96 Bio-Rad Real-Time PCR. The Boyden chamber assay was utilized to investigate BM-MSC homing. RESULTS: Possible approaches to increasing the expression level of chemokine receptors by different hypoxia-mimicking agents such as valproic acid (VPA), CoCl2, and desferrioxamine (DFX) are described. Results show DFX efficiently up-regulate the CXCR7 and CXCR4 gene expression while VPA increase only the CXCR7 gene expression and no significant change in expression level of CXCR4 and the CXCR7 gene was detectable by CoCl2 treatment. Chemotaxis assay results show that pre-treatment with DFX, VPA, and Cocl2 enhances significantly the migration ability of BM-MSCs compared with the untreated control group and DFX treatment accelerates MSCs homing significantly with a higher rate than VPA and Cocl2 treatments. CONCLUSION: Our data supports the notion that pretreatment of MSC with VPA and DFX improves the efficiency of MSC therapy by triggering homing regulatory signaling pathways.

9.
Cell Biol Int ; 40(7): 730-41, 2016 Jul.
Article in English | MEDLINE | ID: mdl-25825165

ABSTRACT

Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target injury tissues for the long term. However, their homing efficiency has been observed to be very poor because of the lack or modifications of homing factors SDF-1α and CXCR4 receptors. Hence, this study was designed to investigate the homing and retention of pretreated human adipose tissue-derived MSCs (hASCs) from three different delivery routes in response to SDF-1α, released from chitosan-based injectable hydrogels. After stimulation of ASCs with a hypoxia mimicking agent, the expression level and functionality of CXCR4 were analyzed by flowcytometric analysis (FACS), transwell migration assay and qPCR. Then, the homing/retention of pretreated DiI-labeled hASCs were compared through three different in vivo delivery routes, 2 weeks after transplantation in Wistar rats. The cells were tracked histologically by fluorescent microscope and by PCR for human-specific CXCR4 gene. Results showed CXCR4 has dynamic expression pattern and pretreatment of hASCs significantly up-regulates CXCR4, leading to an increase in migration capacity toward 100 ng/mL SDF-1α in vitro and homing into the subcutaneously implanted hydrogel releasing SDF-1α in vivo. Furthermore, it seems that SDF-1α is particularly important in the retention of ASCs, in addition to its chemoattraction role. In summary, the delivery route in which the ASCs were mixed with the hydrogel rather than systemic delivery and local injection and preconditioning undertaken to increase CXCR4 expression concomitant with SDF-1α delivery by the injectable hydrogel, allowed for further homing/retention of ASCs. This might be a promising way to get better therapeutic outcomes in stem cell therapy.


Subject(s)
Chemokine CXCL12/administration & dosage , Chemokine CXCL12/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Receptors, CXCR4/metabolism , Transplantation Conditioning/methods , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Cell Movement/physiology , Cell Survival/physiology , Female , Humans , Mesenchymal Stem Cells/cytology , Rats , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...