Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1406-H1419, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607343

ABSTRACT

Cardiovascular research relies heavily on the veracity of in vitro cardiomyocyte models, with H9c2 and HL-1 cell lines at the forefront due to their cardiomyocyte-like properties. However, the variability stemming from nonstandardized culturing and transfection methods poses a significant challenge to data uniformity and reliability. In this study, we introduce meticulously crafted protocols to enhance the culture and transfection of H9c2 and HL-1 cells, emphasizing the reduction of cytotoxic effects while improving transfection efficiency. Through the examination of polymer-based and lipid-based transfection methods, we offer a comparative analysis that underscores the heightened efficiency and reduced toxicity of these approaches. Our research provides an extensive array of step-by-step procedures designed to foster robust cell cultures and outlines troubleshooting practices to rectify issues of low transfection rates. We discuss the merits and drawbacks of both transfection techniques, equipping researchers with the knowledge to choose the most fitting method for their experimental goals. By offering a definitive guide to these cell lines' culturing and transfection, our work seeks to set a new standard in procedural consistency, ensuring that the cardiovascular research community can achieve more dependable and reproducible results, thereby pushing the boundaries of current methodologies toward impactful clinical applications.NEW & NOTEWORTHY We have developed standardized protocols that significantly reduce cytotoxicity and enhance transfection efficiency in H9c2 and HL-1 cardiomyocyte cell lines. Our detailed comparative analysis of polymer-based and lipid-based transfection methods has identified optimized approaches with superior performance. Accompanying these protocols are comprehensive troubleshooting strategies to address common issues related to low transfection rates. Implementing these protocols is expected to yield more consistent and reproducible results, driving the field of cardiovascular research toward impactful clinical breakthroughs.


Subject(s)
Lipids , Myocytes, Cardiac , Transfection , Myocytes, Cardiac/metabolism , Cell Line , Animals , Lipids/toxicity , Lipids/chemistry , Rats , Cell Survival , Polymers/toxicity , Mice
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35163316

ABSTRACT

Metabolic remodeling is at the heart of diabetic cardiomyopathy. High glycemic fluctuations increase metabolic stress in the type 1 diabetes mellitus (T1DM) heart. There is a lack of understanding on how metabolites and genes affect metabolic remodeling in the T1DM heart. We hypothesize that differential expression of metabolic genes and metabolites synergistically influence metabolic remodeling preceding T1DM cardiomyopathy. To test our hypothesis, we conducted high throughput analysis of hearts from adult male hyperglycemic Ins2+/- (Akita) and littermate normoglycemic Ins2+/+ (WT) mice. The Akita mouse is a spontaneous, genetic model of T1DM that develops increased levels of consistent glycemic variability without the off-target cardiotoxic effects present in chemically- induced models of T1DM. After validating the presence of a T1DM phenotype, we conducted metabolomics via LC-MS analysis and genomics via next-generation sequencing in left ventricle tissue from the Akita heart. Ingenuity Pathway Analyses revealed that 108 and 30 metabolic pathways were disrupted within the metabolomics and genomics datasets, respectively. Notably, a comparison between the two analyses showed 15 commonly disrupted pathways, including ketogenesis, ketolysis, cholesterol biosynthesis, acetyl CoA hydrolysis, and fatty acid biosynthesis and beta-oxidation. These identified metabolic pathways predicted by the differential expression of metabolites and genes provide the foundation for understanding metabolic remodeling in the T1DM heart. By limited experiment, we revealed a predicted disruption in the metabolites and genes behind T1DM cardiac metabolic derangement. Future studies targeting these genes and metabolites will unravel novel therapies to prevent/improve metabolic remodeling in the T1DM heart.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Heart/physiology , Myocardium/metabolism , Animals , Blood Glucose/genetics , Blood Glucose/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Disease Models, Animal , Hyperglycemia/genetics , Hyperglycemia/metabolism , Insulin/genetics , Insulin/metabolism , Male , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Mice , Oxidation-Reduction
3.
Methods Mol Biol ; 2224: 113-121, 2021.
Article in English | MEDLINE | ID: mdl-33606210

ABSTRACT

Diabetes mellitus (DM) is caused either due to insulin deficiency (T1DM) or insulin resistance (T2DM). DM increases the risk of heart failure by diabetic cardiomyopathy (DMCM), a cardiac muscle disorder that leads to a progressive decline in diastolic function, and ultimately systolic dysfunction. Mouse models of T1DM and T2DM exhibit clinical signs of DMCM. Growing evidence implicates microRNA (miRNA), an endogenous, non-coding, regulatory RNA, in the pathogenesis and signaling of DMCM. Therefore, inhibiting deleterious miRNAs and mimicking cardioprotective miRNAs could provide a potential therapeutic intervention for DMCM. miRNA-133a (miR-133a) is a highly abundant miRNA in the human heart. It is a cardioprotective miRNA, which is downregulated in the DM heart. It has anti-hypertrophic and anti-fibrotic effects. miR-133a mimic treatment after the onset of early DMCM can reverse histological and clinical signs of the disease in mice. We hypothesized that overexpression of cardiac-specific miR-133a in Ins2+/- Akita (T1DM) mice can prevent progression of DMCM. Here, we describe a method to create and validate cardiac-specific Ins2+/-/miR-133aTg mice to determine whether cardiac-specific miR-133a overexpression prevents development of DMCM. These strategies demonstrate the value of genetic modeling of human disease such as DMCM and evaluate the potential of miRNA as a therapeutic intervention.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Heart/physiopathology , Insulin/genetics , MicroRNAs/genetics , Animals , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Down-Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Myocardium/pathology , Myocytes, Cardiac/pathology
4.
Antioxidants (Basel) ; 8(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835893

ABSTRACT

Obesity increases the risk of developing diabetes and subsequently, diabetic cardiomyopathy (DMCM). Reduced cardioprotective antioxidant hydrogen sulfide (H2S) and increased inflammatory cell death via pyroptosis contribute to adverse cardiac remodeling and DMCM. Although exercise training (EX) has cardioprotective effects, it is unclear whether EX mitigates obesity-induced DMCM by increasing H2S biosynthesis and mitigating pyroptosis in the heart. C57BL6 mice were fed a high-fat diet (HFD) while undergoing treadmill EX for 20 weeks. HFD mice developed obesity, hyperglycemia, and insulin resistance, which were reduced by EX. Left ventricle pressure-volume measurement revealed that obese mice developed reduced diastolic function with preserved ejection fraction, which was improved by EX. Cardiac dysfunction was accompanied by increased cardiac pyroptosis signaling, structural remodeling, and metabolic remodeling, indicated by accumulation of lipid droplets in the heart. Notably, EX increased cardiac H2S concentration and expression of H2S biosynthesis enzymes. HFD-induced obesity led to features of type 2 diabetes (T2DM), and subsequently DMCM. EX during the HFD regimen prevented the development of DMCM, possibly by promoting H2S-mediated cardioprotection and alleviating pyroptosis. This is the first report of EX modulating H2S and pyroptotic signaling in the heart.

5.
Front Physiol ; 10: 598, 2019.
Article in English | MEDLINE | ID: mdl-31178749

ABSTRACT

Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/- (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/- mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/- mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/- mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.

6.
Front Cardiovasc Med ; 6: 45, 2019.
Article in English | MEDLINE | ID: mdl-31069235

ABSTRACT

Advanced diabetes mellitus (DM) may have both insulin resistance and deficiency (double DM) that accelerates diabetic cardiomyopathy (DMCM), a cardiac muscle disorder. Reduced cardiac miR-133a, a cardioprotective miRNA, is associated with DMCM. However, it is unclear whether increasing miR-133a levels in the double DM heart could prevent DMCM. We hypothesized that increasing cardiac levels of miR-133a could prevent DMCM in Akita, a mouse model of double DM. To test the hypothesis, we created Akita/miR-133aTg mice, a new strain of Akita where miR-133a is overexpressed in the heart, by crossbreeding male Akita with female cardiac-specific miR-133a transgenic mice. We validated Akita/miR-133aTg mice by genotyping and phenotyping (miR-133a levels in the heart). To determine whether miR-133a overexpression could prevent cardiac remodeling and cardiomyopathy, we evaluated cardiac fibrosis, hypertrophy, and dysfunction (P-V loop) in 13-15 week male WT, Akita, Akita/miR-133aTg, and miR-133aTg mice. Our results revealed that miR-133a overexpression in the Akita heart prevents DM-induced cardiac fibrosis (reduced collagen deposition), hypertrophy (decreased beta-myosin heavy chain), and impaired contractility (downregulated calcium handling protein sarco-endoplasmic reticulum-ATPase-2a). These results demonstrate that increased levels of miR-133a in the DM heart could prevent cardiac remodeling. Our P-V loop analysis showed a trend of decreased cardiac output, stroke volume, and ± dp/dt in Akita, which were blunted in Akita/miR-133aTg heart. These findings suggest that 13-15 week Akita heart undergoes adverse remodeling toward cardiomyopathy, which is prevented by miR-133a overexpression. In addition, increased cardiac miR-133a in the Akita heart did not change blood glucose levels but decreased lipid accumulation in the heart, suggesting inhibition of metabolic remodeling in the heart. Thus, miR-133a could be a promising therapeutic candidate to prevent DMCM.

7.
PLoS One ; 12(8): e0182828, 2017.
Article in English | MEDLINE | ID: mdl-28837672

ABSTRACT

Although diabetes mellitus (DM) causes cardiomyopathy and exacerbates heart failure, the underlying molecular mechanisms for diabetic cardiomyopathy/heart failure are poorly understood. Insulin2 mutant (Ins2+/-) Akita is a mouse model of T1DM, which manifests cardiac dysfunction. However, molecular changes at cardiac transcriptome level that lead to cardiomyopathy remain unclear. To understand the molecular changes in the heart of diabetic Akita mice, we profiled cardiac transcriptome of Ins2+/- Akita and Ins2+/+ control mice using next generation sequencing (NGS) and microarray, and determined the implications of differentially expressed genes on various heart failure signaling pathways using Ingenuity pathway (IPA) analysis. First, we validated hyperglycemia, increased cardiac fibrosis, and cardiac dysfunction in twelve-week male diabetic Akita. Then, we analyzed the transcriptome levels in the heart. NGS analyses on Akita heart revealed 137 differentially expressed transcripts, where Bone Morphogenic Protein-10 (BMP10) was the most upregulated and hairy and enhancer of split-related (HELT) was the most downregulated gene. Moreover, twelve long non-coding RNAs (lncRNAs) were upregulated. The microarray analyses on Akita heart showed 351 differentially expressed transcripts, where vomeronasal-1 receptor-180 (Vmn1r180) was the most upregulated and WD Repeat Domain 83 Opposite Strand (WDR83OS) was the most downregulated gene. Further, miR-101c and H19 lncRNA were upregulated but Neat1 lncRNA was downregulated in Akita heart. Eleven common genes were upregulated in Akita heart in both NGS and microarray analyses. IPA analyses revealed the role of these differentially expressed genes in key signaling pathways involved in diabetic cardiomyopathy. Our results provide a platform to initiate focused future studies by targeting these genes and/or non-coding RNAs, which are differentially expressed in Akita hearts and are involved in diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Gene Expression Profiling , Myocardium/metabolism , Oligonucleotide Array Sequence Analysis , Transcriptome , Animals , High-Throughput Nucleotide Sequencing , Male , Mice
8.
Diabetes ; 65(10): 3075-90, 2016 10.
Article in English | MEDLINE | ID: mdl-27411382

ABSTRACT

MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating ß-adrenergic receptors (ß-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or ß-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat's heart concomitant with upregulation of TH, cardiac NE, ß-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, ß-AR and cardiac function.


Subject(s)
MicroRNAs/metabolism , Myocardial Contraction/physiology , Myocardium/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine Transaminase/metabolism , Animals , Blotting, Western , Diabetes Mellitus, Experimental/metabolism , HEK293 Cells , Hemodynamics/physiology , Humans , Immunohistochemistry , Male , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/physiology , Myocardial Contraction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Norepinephrine/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tyrosine 3-Monooxygenase/genetics , Tyrosine Transaminase/genetics
9.
Am J Transl Res ; 7(4): 683-96, 2015.
Article in English | MEDLINE | ID: mdl-26064437

ABSTRACT

Autophagy is ubiquitous in all forms of heart failure and cardioprotective miR-133a is attenuated in human heart failure. Previous reports from heart failure patients undergoing left ventricular assist device (LVAD) implantation demonstrated that autophagy is upregulated in the LV of the failing human heart. Studies in the murine model show that diabetes downregulates miR-133a. However, the role of miR-133a in the regulation of autophagy in diabetic hearts is unclear. We tested the hypothesis that diabetes exacerbates cardiac autophagy by inhibiting miR-133a in heart failure patients undergoing LVAD implantation. The miRNA assay was performed on the LV of 15 diabetic (D) and 6 non-diabetic (ND) heart failure patients undergoing LVAD implantation. Four ND with highly upregulated and 5 D with highly downregulated miR-133a were analyzed for autophagy markers (Beclin1, LC3B, ATG3) and their upstream regulators (mTOR and AMPK), and hypertrophy marker (beta-myosin heavy chain) by RT-qPCR, Western blotting and immunofluorescence. Our results demonstrate that attenuation of miR-133a in diabetic hearts is associated with the induction of autophagy and hypertrophy, and suppression of mTOR without appreciable difference in AMPK activity. In conclusion, attenuation of miR-133a contributes to the exacerbation of diabetes mediated cardiac autophagy and hypertrophy in heart failure patients undergoing LVAD implantation.

10.
Mol Cell Biochem ; 404(1-2): 241-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25763715

ABSTRACT

An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (ß-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and ß-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C-HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C-HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.


Subject(s)
Hydrogen Sulfide/administration & dosage , Hyperhomocysteinemia/genetics , MicroRNAs/biosynthesis , Animals , Gene Expression Regulation/drug effects , Homocysteine/administration & dosage , Humans , Hyperhomocysteinemia/pathology , MEF2 Transcription Factors/biosynthesis , MEF2 Transcription Factors/genetics , Mice , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Remodeling/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...