Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(4): 106448, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37020951

ABSTRACT

Excessive iron accumulation or deficiency leads to a variety of pathologies in humans and developmental arrest in the nematode Caenorhabditis elegans. Instead, sub-lethal iron depletion extends C. elegans lifespan. Hypoxia preconditioning protects against severe hypoxia-induced neuromuscular damage across species but it has low feasible application. In this study, we assessed the potential beneficial effects of genetic and chemical interventions acting via mild iron instead of oxygen depletion. We show that limiting iron availability in C. elegans through frataxin silencing or the iron chelator bipyridine, similar to hypoxia preconditioning, protects against hypoxia-, age-, and proteotoxicity-induced neuromuscular deficits. Mechanistically, our data suggest that the beneficial effects elicited by frataxin silencing are in part mediated by counteracting ferroptosis, a form of non-apoptotic cell death mediated by iron-induced lipid peroxidation. This is achieved by impacting on different key ferroptosis players and likely via gpx-independent redox systems. We thus point to ferroptosis inhibition as a novel potential strategy to promote healthy aging.

2.
Aging (Albany NY) ; 13(1): 104-133, 2020 12 13.
Article in English | MEDLINE | ID: mdl-33349622

ABSTRACT

Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.


Subject(s)
Aging/genetics , Caenorhabditis elegans Proteins/genetics , Diet , Environment , Longevity/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Benzo(a)pyrene/toxicity , Caenorhabditis elegans , Caenorhabditis elegans Proteins/physiology , Escherichia coli/metabolism , Heat-Shock Response/genetics , Mutation , Receptors, Aryl Hydrocarbon/physiology , Stress, Physiological/genetics , Tryptophan/metabolism , Ultraviolet Rays/adverse effects
3.
EMBO Rep ; 19(12)2018 12.
Article in English | MEDLINE | ID: mdl-30366941

ABSTRACT

Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.


Subject(s)
Apoptosis , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Longevity , Mitochondria/metabolism , Stress, Physiological , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Proliferation , DNA Damage , DNA Repair , Germ Cells/cytology , Mitosis
4.
Cell Cycle ; 15(14): 1805-6, 2016 07 17.
Article in English | MEDLINE | ID: mdl-27115480
5.
Curr Biol ; 25(14): 1810-22, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26144971

ABSTRACT

Frataxin is a nuclear-encoded mitochondrial protein involved in the biogenesis of Fe-S-cluster-containing proteins and consequently in the functionality of the mitochondrial respiratory chain. Similar to other proteins that regulate mitochondrial respiration, severe frataxin deficiency leads to pathology in humans--Friedreich's ataxia, a life-threatening neurodegenerative disorder--and to developmental arrest in the nematode C. elegans. Interestingly, partial frataxin depletion extends C. elegans lifespan, and a similar anti-aging effect is prompted by reduced expression of other mitochondrial regulatory proteins from yeast to mammals. The beneficial adaptive responses to mild mitochondrial stress are still largely unknown and, if characterized, may suggest novel potential targets for the treatment of human mitochondria-associated, age-related disorders. Here we identify mitochondrial autophagy as an evolutionarily conserved response to frataxin silencing, and show for the first time that, similar to mammals, mitophagy is activated in C. elegans in response to mitochondrial stress in a pdr-1/Parkin-, pink-1/Pink-, and dct-1/Bnip3-dependent manner. The induction of mitophagy is part of a hypoxia-like, iron starvation response triggered upon frataxin depletion and causally involved in animal lifespan extension. We also identify non-overlapping hif-1 upstream (HIF-1-prolyl-hydroxylase) and downstream (globins) regulatory genes mediating lifespan extension upon frataxin and iron depletion. Our findings indicate that mitophagy induction is part of an adaptive iron starvation response induced as a protective mechanism against mitochondrial stress, thus suggesting novel potential therapeutic strategies for the treatment of mitochondrial-associated, age-related disorders.


Subject(s)
Caenorhabditis elegans/physiology , Iron Deficiencies , Mitophagy/drug effects , Anaerobiosis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fasting , Iron-Binding Proteins , Longevity/drug effects , Frataxin
6.
Exp Gerontol ; 56: 89-98, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24709340

ABSTRACT

Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.


Subject(s)
Aging/metabolism , Caenorhabditis elegans/metabolism , Cellular Senescence , Hormesis , Mitochondria/metabolism , Sensory Receptor Cells/metabolism , Stress, Physiological , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cellular Senescence/drug effects , Genotype , Longevity , Mitochondria/drug effects , Motor Activity , Mutation , Phenotype , RNA Interference , Sensory Receptor Cells/drug effects , Smell , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...