Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11609, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773214

ABSTRACT

No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.


Subject(s)
Biomarkers, Tumor , Mouth Neoplasms , Pyrimidines , Uracil , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Uracil/metabolism , Biomarkers, Tumor/metabolism , Pyrimidines/metabolism , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Male , Middle Aged , Tumor Microenvironment , Aged , Apyrase/metabolism
2.
Mol Cell Biochem ; 479(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36966422

ABSTRACT

MALDI imaging for metabolites and immunohistochemistry for 38 immune markers was used to characterize the spatial biology of 2 primary oral tumours, one from a patient with an early recurrence (Tumour R), and the other from a patient with no recurrence 2 years after treatment completion (Tumour NR). Tumour R had an increased purine nucleotide metabolism in different regions of tumour and adenosine-mediated suppression of immune cells compared to Tumour NR. The differentially expressed markers in the different spatial locations in tumour R were CD33, CD163, TGF-ß, COX2, PD-L1, CD8 and CD20. These results suggest that altered tumour metabolomics concomitant with a modified immune microenvironment could be a potential marker of recurrence.


Subject(s)
Mouth Neoplasms , Humans , Mouth Neoplasms/pathology , Tumor Microenvironment
3.
Anticancer Agents Med Chem ; 22(11): 2156-2165, 2022.
Article in English | MEDLINE | ID: mdl-34781872

ABSTRACT

BACKGROUND: The World Health Organization (WHO) estimated that the number of cancer-related deaths was 9.6 million in 2018 and 2.09 million deaths occurred by lung cancer. The American Institute for Cancer Research (AICR) also observed gender preferences in lung cancer, common in men than women. Since the past decade, nanoparticles have now been widely documented for their anti-cancer properties, which signifies that the development of nanotechnology would be a future diagnosis and treatment strategy for lung cancer. OBJECTIVE: The current study aimed to investigate the role of biosynthesized CdS nanoparticles (CdS NPs) in lung cancer cells (A549). Therefore, whether the CdS NP induces lung cancer cell death and the underlying mechanism is yet to be elucidated. METHODS: Literature was searched from various archives of biomedical and life science journals. Then, CdS NPs were biosynthesized and characterized by traditional and cutting-edge protocols. The CdS NP-mediated cell death was elucidated following standard protocols. RESULTS: CdS NPs induced cytotoxicity towards A549 cells in a dose-dependent manner. However, such a death mechanism does not go through necrosis. Intracellular reactive oxygen species (ROS) accumulation and mitochondrial membrane depolarization demonstrated that cell death is associated with intracellular ROS production. Furthermore, increased sub-G1 population, Bax expression, and decreased Bcl-2 expression revealed that the death was caused by apoptosis. CONCLUSION: CdS NPs promote apoptosis-mediated lung cancer cell death through ROS production.


Subject(s)
Lung Neoplasms , Nanoparticles , A549 Cells , Apoptosis , Female , Humans , Lung Neoplasms/drug therapy , Male , Reactive Oxygen Species/metabolism
4.
Trends Mol Med ; 25(7): 571-584, 2019 07.
Article in English | MEDLINE | ID: mdl-31031178

ABSTRACT

T-Type calcium channels (TTCCs) are key regulators of membrane excitability, which is the reason why TTCC pharmacology is subject to intensive research in the neurological and cardiovascular fields. TTCCs also play a role in cancer physiology, and pharmacological blockers such as tetralols and dihydroquinazolines (DHQs) reduce the viability of cancer cells in vitro and slow tumor growth in murine xenografts. However, the available compounds are better suited to blocking TTCCs in excitable membranes rather than TTCCs contributing window currents at steady potentials. Consistently, tetralols and dihydroquinazolines exhibit cytostatic/cytotoxic activities at higher concentrations than those required for TTCC blockade, which may involve off-target effects. Gene silencing experiments highlight the targetability of TTCCs, but further pharmacological research is required for TTCC blockade to become a chemotherapeutic option.


Subject(s)
Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Ion Channel Gating , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels, T-Type/chemistry , Cell Survival/drug effects , Disease Susceptibility , Gene Knockdown Techniques , Humans , Signal Transduction
5.
Curr Mol Pharmacol ; 12(4): 261-271, 2019.
Article in English | MEDLINE | ID: mdl-30854984

ABSTRACT

OBJECTIVE: Bafilomycin-A1 and ML9 are lysosomotropic agents, irrespective of cell types. However, the mechanisms of lysosome targeting either bafilomycin-A1 or ML9 are unclear. METHODS: The present research has been carried out by different molecular and biochemical analyses like western blot, confocal imaging and FACS studies, as well as molecular docking. RESULTS: Our data shows that pre-incubation of neonatal cardiomyocytes with ML9 for 4h induced cell death, whereas a longer period of time (24h) with bafilomycin-A1 was required to induce an equivalent effect. Neither changes in ROS nor ATP production is associated with such death mechanisms. Flow cytometry, LC3-II expression levels, and LC3-GFP puncta formation revealed a similar lysosomotropic effect for both compounds. We used a molecular docking approach, that predicts a stronger inhibitory activity against V-ATPase-C1 and C2 domains for bafilomycin-A1 in comparison to ML9. CONCLUSION: Bafilomycin-A1 and ML9 are lysosomotropic agents, involved in cell death events. But such death events are not associated with ATP and ROS production. Furthermore, both the drugs target lysosomes through different mechanisms. For the latter, cell death is likely due to lysosomal membrane permeabilization and release of lysosomal proteases into the cytosol.


Subject(s)
Lysosomes/drug effects , Macrolides/pharmacology , Myocytes, Cardiac/drug effects , Piperazines/pharmacology , Animals , Cell Death/drug effects , Cells, Cultured , Lysosomes/metabolism , Macroautophagy/drug effects , Models, Molecular , Myocytes, Cardiac/cytology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
6.
Cancer Res ; 78(3): 603-609, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29343521

ABSTRACT

In the past decade, T-type Ca2+ channels (TTCC) have been unveiled as key regulators of cancer cell biology and thus have been proposed as chemotherapeutic targets. Indeed, in vitro and in vivo studies indicate that TTCC pharmacologic blockers have a negative impact on the viability of cancer cells and reduce tumor size, respectively. Consequently mibefradil, a TTCC blocker approved in 1997 as an antihypertensive agent but withdrawn in 1998 because of drug-drug interactions, was granted 10 years later the orphan drug status by the FDA to investigate its efficacy against brain, ovary, and pancreatic cancer. However, the existence of different channel isoforms with distinct physiologic roles, together with the lack of selective pharmacologic agents, has hindered a conclusive chemotherapeutic evaluation. Here, we review the available evidence on TTCC expression, value as prognostic markers, and effectiveness of their pharmacologic blockade on cancer cells in vitro and in preclinical models. We additionally summarize the status of clinical trials using mibefradil against glioblastoma multiforme. Finally, we discuss the future perspectives and the importance of further development of multidisciplinary research efforts on the consideration of TTCCs as biomarkers or targetable molecules in cancer. Cancer Res; 78(3); 603-9. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/chemistry , Molecular Targeted Therapy , Neoplasms/drug therapy , Humans , Neoplasms/metabolism , Neoplasms/pathology
7.
Am J Physiol Endocrinol Metab ; 310(8): E587-E596, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26884385

ABSTRACT

Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.


Subject(s)
Autophagy , Calcium Signaling , Calcium/metabolism , Myocytes, Cardiac/metabolism , Animals , Humans , Insulin-Like Growth Factor I/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
8.
Indian J Biochem Biophys ; 50(5): 419-27, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24772963

ABSTRACT

There is growing evidence that ouabain, a cardiotonic steroid may promote growth of cardiac and vascular myocytes, indicating its novel role in cell growth and proliferation, without appreciable inhibition of the sodium pump. The mechanism(s) by which low dose of ouabain produces pulmonary artery smooth muscle cell proliferation, a prerequisite for right ventricular hypertrophy, is currently unknown. Here, we analyzed the effects of low dose of ouabain (10 nM) on increase in [Ca2+]i, m-calpain and protein kinase C (PKC) activities on pulmonary artery smooth muscle cell proliferation and determined their sequential involvement in this scenario. We treated bovine pulmonary artery smooth muscle cells with a low dose of ouabain (10 nM) and determined [Ca2+]i in the cells by fluorometric assay using fura2-AM, m-calpain activity by fluorometric assay using SLLVY-AMC as the substrate. PKC activity using an assay kit and assay of Na+/K+ ATPase activity spectrophotometrically. We purified m-calpain and PKCalpha by standard chromatographic procedure by HPLC and then studied cleavage of the purified PKCalpha by m-calpain using Western immunoblot method. Subsequently, we performed cell proliferation assay utilizing the redox dye resazunin. We used selective inhibitors of [Ca2+]i (BAPTA-AM), m-calpain (MDL28170), PKCalpha (Go6976) and determined their involvement in ouabain (10 nM)-mediated smooth muscle cell proliferation. Our results suggested that treatment of bovine pulmonary artery smooth muscle cells with a low dose of ouabain (10 nM) increased [Ca2+]i and subsequently stimulated m-calpain activity and proteolytically activated PKCalpha in caveolae (signaling microdomain also known as signalosomes) of the cells. Upon activation, PKCalpha increased the smooth muscle cell proliferation via Go/G1 to S/G2-M phase transition. Thus, [Ca2]i-mCalpain-PKCalpha signaling axis plays a crucial role during low dose of ouabain-mediated pulmonary artery smooth muscle cell proliferation.


Subject(s)
Calpain/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Ouabain/pharmacology , Protein Kinase C-alpha/metabolism , Pulmonary Artery/cytology , Amino Acid Sequence , Animals , Cattle , Caveolae/drug effects , Caveolae/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Molecular Sequence Data , Myocytes, Smooth Muscle/metabolism , Protein Kinase C-alpha/chemistry , Proteolysis/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism
9.
Indian J Biochem Biophys ; 49(5): 316-28, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23259318

ABSTRACT

The number of mammalian calpain protease family members has grown as many as 15 till recent count. Although initially described as a cytosolic protease, calpains have now been found in almost all subcellular locations i.e., from mitochondria to endoplasmic reticulum and from caveolae to Golgi bodies. Importantly, some calpains do not possess the 28 kDa regulatory subunit and have only the 80 kDa catalytic subunit. In some instances, the 80 kDa subunit by itself confers the calpain proteolytic activity. Calpains have been shown to be involved in a number of physiological processes such as cell cycle progression, remodeling of cytoskeletal-cell membrane attachments, signal transduction, gene expression and apoptosis. Recent studies have linked calpain deficiencies or it's over production with a variety of diseases, such as muscular dystrophies, gastropathy, diabetes, Alzheimer's and Parkinson's diseases, atherosclerosis and pulmonary hypertension. Herein, we present a brief overview on some implications of calpains on human health and some diseases.


Subject(s)
Brain Diseases/metabolism , Calpain/chemistry , Calpain/metabolism , Cytoskeleton/metabolism , Nervous System Diseases/metabolism , Reperfusion Injury/metabolism , Animals , Cell Adhesion/physiology , Humans
10.
Arch Biochem Biophys ; 523(2): 169-80, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22568895

ABSTRACT

We have recently reported that treatment of bovine pulmonary artery smooth muscle cells with the thromboxane A(2) mimetic, U46619 stimulated NADPH oxidase derived O(2)(·-) level, which subsequently caused marked increase in [Ca(2+)](i)[17]. Herein, we demonstrated that O(2)(·-)-mediated increase in [Ca(2+)](i) stimulates an aprotinin sensitive proteinase activity, which proteolytically activates PKC-α under U46619 treatment to the cells. The activated PKC-α then phosphorylates p(38)MAPK and that subsequently caused G(i)α phosphorylation leading to stimulation of cPLA(2) activity in the cell membrane.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , NADPH Oxidases/metabolism , Phospholipases A2, Cytosolic/metabolism , Pulmonary Artery/cytology , Superoxides/metabolism , Animals , Biomimetic Materials/pharmacology , Calcium/metabolism , Cattle , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/metabolism , Enzyme Activation/drug effects , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Thromboxane A2/metabolism , Vasoconstrictor Agents/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Mol Cell Biochem ; 341(1-2): 167-80, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20372982

ABSTRACT

Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na(+)/Ca(2+) exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 microM) in presence of CaCl(2) (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca(2+) chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca(2+) overload, which could arise due to inhibition of Ca(2+) efflux by the forward-mode NCX and that could lead to sustained Ca(2+) overload in the smooth muscle leading to pulmonary hypertension.


Subject(s)
Calpain/metabolism , Caveolae/metabolism , Muscle, Smooth, Vascular/metabolism , Pulmonary Artery , Animals , Calcium/metabolism , Calpain/chemistry , Calpain/genetics , Calpain/isolation & purification , Cattle , Hypertension/etiology , Immunoassay , Molecular Weight , Peptide Fragments/chemistry , Protein Subunits
12.
J Biochem ; 147(5): 765-79, 2010 May.
Article in English | MEDLINE | ID: mdl-20123702

ABSTRACT

Previously, we reported that bovine pulmonary smooth muscle endoplasmic reticulum (ER) membrane possesses associated m-calpain and calpastatin and ER lumen contains only m-calpain. Herein, we report characteristic properties of ER membrane m-calpain (MCp), calpastatins and lumen m-calpain (LCp) and a brief comparative study between MCp and LCp. MCp containing 80 kDa large and 28 kDa small subunit is non-phosphorylated, whereas LCp containing only 80 kDa large subunit is phosphorylated. Optimum pH, Ca(2+) concentration and pI value of both MCp and LCp are 7.5, 5 mM and 4.5, respectively. MCp and LCp have similar kinetic parameters and circular dichroism (CD) spectra. Autolysis of MCp and LCp are different. Coimmunoprecipitation studies revealed that LCp is associated with ERp57 in the ER lumen, which suggests that the regulation of LCp differs from the regulation of MCp. In presence of Ca(2+), the activated LCp cleaves inositol 1,4,5-trisphosphate receptor-1 (IP(3)R1) in the ER lumen, whereas the activated MCp cleaves Na(+)/Ca(2+) exchanger-1 (NCX1) in the ER membrane. We have determined pI (4.6 and 4.7, respectively) and IC(50) (0.52 and 0.8 nM, respectively) values of 110 and 70 kDa calpastatins. For first time, we have determined the characteristic properties, regulation and functional activity of LCp in the ER lumen.


Subject(s)
Calcium-Binding Proteins/metabolism , Calpain/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Animals , Calcium/metabolism , Calcium-Binding Proteins/chemistry , Calpain/chemistry , Cattle , Circular Dichroism , Hydrogen-Ion Concentration , Kinetics , Muscle, Smooth, Vascular/cytology
13.
Arch Biochem Biophys ; 495(1): 1-7, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20035707

ABSTRACT

Calpain system is generally known to be comprised of three molecules: two Ca2+-dependent proteases: mu- and m-calpains, and their endogenous inhibitor, calpastatin. While calpains have previously been considered as the cytoplasmic enzymes, research in the recent past demonstrated that mu-calpain, m-calpain and calpain 10 are present in mitochondria, which play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. Although a number of original research articles on mitochondrial calpain system are available, yet to the best of our knowledge, a precise review article on mitochondrial calpain system has, however, not been available. This review outlines the key features of the mitochondrial calpain system, and its roles in several cellular and biochemical events under normal and some pathophysiological conditions.


Subject(s)
Calpain/metabolism , Mitochondria/enzymology , Animals , Apoptosis , Humans
14.
Arch Biochem Biophys ; 487(2): 123-30, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19497296

ABSTRACT

Treatment of bovine pulmonary smooth muscle cells with the TxA(2) mimetic, U46619 stimulated [Ca(2+)](i), which was inhibited upon pretreatment with apocynin (NADPH oxidase inhibitor). Pretreatment with cromakalim (K(V) channel opener) or nifedepine (L-VOCC inhibitor) inhibited U46619 induced increase in [Ca(2+)](i), indicating a role of K(V)-LVOCC axis in this scenario. Neither cromakalim nor nifedepine inhibited U46619 induced increase in NADPH oxidase activity, suggesting that the NADPH oxidase activation is proximal to the K(V)-LVOCC axis in the cells. Pretreatment with calphostin C (PKC inhibitor) markedly reduced U46619 induced increase in NADPH oxidase activity and [Ca(2+)](i) in the cells. Calphostin C pretreatment also markedly reduced p(47phox) phosphorylation and translocation to the membrane and association with p(22phox), a component of Cyt.b(558) of NADPH oxidase in the membrane. Overall, PKC plays an important role in NADPH oxidase derived O(2)(-)-mediated regulation of K(V)-LVOCC axis leading to an increase in [Ca(2+)](i) by U46619 in the cells.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Calcium/metabolism , Ion Channels/metabolism , Lung/cytology , Myocytes, Smooth Muscle/metabolism , NADPH Oxidases/metabolism , Protein Kinase C/metabolism , Superoxides/metabolism , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cattle , Cell Membrane/drug effects , Cell Membrane/metabolism , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Mice , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Potassium Channels, Voltage-Gated/metabolism , Protein Kinase C/antagonists & inhibitors , Pulmonary Artery/cytology , Receptors, Thromboxane/metabolism , Thromboxanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...