Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent J (Basel) ; 12(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38786524

ABSTRACT

BACKGROUND: The aim of this study was to investigate and visualize the anti-inflammatory and anti-bacterial effects of different oral care products using an infected and inflamed 3D tissue-engineered gingival mucosal model. METHODS: A 3D full-thickness oral mucosal model was engineered inside tissue culture inserts using collagen hydrogels populated with human gingival fibroblasts and THP-1 monocytes and layered with oral epithelial cell lines. Oral saliva bacteria were cultured and added to the surface of the models and inflammation was further simulated with lipopolysaccharide (LPS) of Escherichia coli. The 3D models were exposed to three different types of toothpastes, a chlorhexidine antiseptic mouthwash, different antibiotics, and a mechanical rinse with phosphate-buffered saline (PBS) prior to biological evaluation using the PrestoBlue tissue viability assay, histology, optical coherence tomography (OCT), confocal microscopy, and measurement of the release of the inflammatory markers IL-1ß, IL-6, and IL-8 with ELISA. RESULTS: Multiple-endpoint analyses of the infected oral mucosal models treated with different anti-bacterial agents showed consistent outcomes in terms of tissue viability, histology, OCT, and confocal microscopy findings. In terms of anti-inflammatory testings, the positive control group showed the highest level of inflammation compared with all other groups. Depending on the anti-bacterial and anti-inflammatory potential of the test groups, different levels of inflammation were observed in the test groups. CONCLUSIONS: The inflamed 3D oral mucosal model developed in this study has the potential to be used as a suitable in vitro model for testing the biocompatibility, anti-inflammatory, and anti-bacterial properties of oral care products including mouthwashes and toothpastes. The results of this study indicate that the chlorhexidine mouthwash has both anti-bacterial and cytotoxic effects on the 3D oral mucosal model. Hyaluronic-acid-containing toothpaste has significant anti-bacterial and anti-inflammatory effects on the 3D oral mucosal model.

2.
Dent J (Basel) ; 8(3)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645887

ABSTRACT

PURPOSE: The aim of this study was to investigate soft-tissue attachment to different metal, ceramic, and polymer implant surfaces using an inflamed, three-dimensional (3D), tissue-engineered, human oral mucosal model, as well as multiple-endpoint qualitative and quantitative biological approaches. METHODS: Normal human oral fibroblasts, OKF6/TERT-2 keratinocytes and THP-1 monocytes were cultured, and full-thickness, 3D oral mucosal models were engineered inside tissue culture inserts. Sand-blasted and acid-etched (SLA) and machined (M) titanium-zirconium alloy (TiZr; commercially known as Roxolid; Institut Straumann AG, Switzerland), ceramic (ZrO2), and polyether ether ketone (PEEK) rods (Ø 4 mm × 8 mm) were inserted into the center of tissue-engineered oral mucosa following a Ø 4mm punch biopsy. Inflammation was simulated with addition of the lipopolysaccharide (LPS) of Escherichia coli (E. coli) and tumor necrosis factor (TNF)-alpha to the culture medium. Implant soft-tissue attachment was assessed using histology, an implant pull-test with PrestoBlue assay, and scanning electron microscopy (SEM). RESULTS: Inflamed, full-thickness, 3D human oral mucosal models with inserted implants were successfully engineered and histologically characterized. The implant pull-test with PrestoBlue assay showed higher viability of the tissue that remained attached to the TiZr-SLA surface compared to the other test groups. This difference was statistically significant (p < 0.05). SEM analysis showed evidence of epithelial cell attachment on different implant surfaces. CONCLUSIONS: The inflamed, 3D, oral mucosal model has the potential to be used as a suitable in vitro test system for visualization and quantification of implant soft-tissue attachment. The results of our study indicate greater soft tissue attachment to TiZr-SLA compared to TiZr-M, ceramic, and PEEK surfaces.

3.
J Adv Periodontol Implant Dent ; 11(2): 54-62, 2019.
Article in English | MEDLINE | ID: mdl-35919485

ABSTRACT

Background: There is limited data available on potential biological effects of E-cigarettes on human oral tissues. The aim of this study was to evaluate the effects of E-cigarette liquid on the proliferation of normal and cancerous monolayer and 3D models of human oral mucosa and oral wound healing after short-term and medium-term exposure. Methods: Normal human oral fibroblasts (NOF), immortalized OKF6-TERET-2 human oral keratinocytes, and cancerous TR146 keratinocyte monolayer cultures and 3D tissue engineered oral mucosal models were exposed to different concentrations (0.1%, 1%, 5% and 10%) of E-cigarette liquid (12 mg/ml nicotine) for 1 hour daily for three days and for 7 days. Tissue viability was monitored using the PrestoBlue assay. Wounds were also produced in the middle surface of the monolayer systems vertically using a disposable cell scraper. The alterations in the cell morphology and wound healing were visualized using light microscopy and histological examination. Results: Statistical analysis showed medium-term exposure of TR146 keratinocytes to 5% and 10% E-liquid concentrations significantly increased the viability of the cancer cells compared to the negative control. Short-term exposure of NOFs to 10% E-liquid significantly reduced the cell viability, whereas medium-term exposure to all E-liquid concentrations significantly reduced the NOF cells' viability. OKF6 cells exhibited significantly lower viability following short-term and mediumterm exposure to all E-cigarette concentrations compared to the negative control. 3D oral mucosal model containing normal oral fibroblasts and keratinocytes showed significant reduction in tissue viability after exposure to 10% E-liquid, whereas medium-term exposure resulted in significantly lower viability in 5% and 10% concentration groups compared to the negative control. There was a statistically significant difference in wound healing times of both NOF and OKF6 cells after exposure to 1%, 5% and 10% E-cigarette liquid. Conclusion: Medium-term exposure to high concentrations of the E-cigarette liquid had cytotoxic effects on normal human oral fibroblasts and OKF6 keratinocytes, but a stimulatory cumulative effect on the growth of cancerous TR146 keratinocyte cells as assessed by the PrestoBlue assay and histological evaluation of 3D oral mucosal models. In addition, E-liquid exposure prolonged the wound healing of NOF and OKF6 oral mucosa cells.

SELECTION OF CITATIONS
SEARCH DETAIL