Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38134933

ABSTRACT

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Subject(s)
Glioblastoma , Humans , Gene Expression Profiling , Glioblastoma/pathology , Immunotherapy , Killer Cells, Natural , Macrophages , Tumor Microenvironment , Single-Cell Analysis
2.
J Thromb Thrombolysis ; 55(1): 74-82, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35699871

ABSTRACT

This study aimed to characterize the utilization of four-factor prothrombin complex concentrate (4F-PCC) at a tertiary academic medical center and evaluate the incidence of thromboembolic events (TEs) and mortality when used in an on-label versus off-label context. All medical records for consecutive patients having received 4F-PCC over 61-months were retrospectively evaluated. On-label indications for 4F-PCC were defined per FDA guidance, with the remaining indications considered off-label. Three hundred sixty-nine 4F-PCC doses were administered to 355 patients, with 46.6% of administrations classified as off-label. On-label and off-label groups demonstrated similar rates of TEs (16.2% vs. 14%). On-label patients receiving repeated administrations of 4F-PCC or with a post-administration INR ≤ 1.5 had a significantly higher incidence of TE. Off-label patients with a prior history of TE were more likely to develop a TE following 4F-PCC administration. Off-label patients also had a significantly higher 30-day mortality relative to on-label patients (29.1% versus 18.3%). In conclusion, in a large cohort of patients, observed rates of off-label 4F-PCC use were high. Underlying prothrombotic risk factors were predictive of TEs in off-label patients. Moreover, patients receiving off-label 4F-PCC demonstrated higher transfusion rates. Overall, our study findings suggest that the utilization of 4F-PCC in an off-label context may convey a significant risk to patients with uncertain clinical benefits.


Subject(s)
Off-Label Use , Thromboembolism , Humans , Retrospective Studies , Blood Coagulation Factors/adverse effects , Factor IX , Thromboembolism/chemically induced , Anticoagulants/adverse effects , International Normalized Ratio
3.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36543374

ABSTRACT

BACKGROUND: B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS: We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS: Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS: We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.


Subject(s)
B-Lymphocytes , T-Lymphocytes , Immunosuppressive Agents/pharmacology , Sirolimus , Immunotherapy
4.
Cell Rep ; 36(3): 109432, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34270918

ABSTRACT

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

5.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34138753

ABSTRACT

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Subject(s)
Glioblastoma/immunology , Integrins/immunology , Killer Cells, Natural/immunology , Neoplasm Proteins/immunology , Neoplastic Stem Cells/immunology , Transforming Growth Factor beta/immunology , Animals , Female , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , Heterografts , Humans , Integrins/genetics , Killer Cells, Natural/pathology , Male , Mice , Neoplasm Proteins/genetics , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/immunology , Transforming Growth Factor beta/genetics
6.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33986022

ABSTRACT

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Subject(s)
Antibodies, Bispecific , Immunotherapy , Killer Cells, Natural , Leukemia , Lymphoma , Humans , Antibodies, Bispecific/therapeutic use , Blood/drug effects , Blood/immunology , Cells, Cultured , Combined Modality Therapy , Cytokines/pharmacology , Fetal Blood/drug effects , Fetal Blood/immunology , Immunotherapy/methods , Ki-1 Antigen/immunology , Killer Cells, Natural/immunology , Leukemia/therapy , Lymphoma/therapy , Receptors, IgG/immunology
7.
Front Immunol ; 12: 631353, 2021.
Article in English | MEDLINE | ID: mdl-34017325

ABSTRACT

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming/physiology , Fetal Blood/cytology , Graft vs Host Disease/prevention & control , Mesenchymal Stem Cells/metabolism , Animals , Cellular Reprogramming/drug effects , Cellular Reprogramming/immunology , Cytokines/pharmacology , Female , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred NOD , Quality Control
8.
Front Immunol ; 12: 626098, 2021.
Article in English | MEDLINE | ID: mdl-33717142

ABSTRACT

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Subject(s)
Antigen-Presenting Cells/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Chimeric Antigen/genetics , Animals , Cell Engineering , Cell Line, Tumor , Cell Proliferation , Cytotoxicity, Immunologic , Fetal Blood , HLA Antigens/genetics , Humans , K562 Cells , Mice , Mice, Knockout , Receptors, Natural Killer Cell/metabolism , Transcriptome , Transduction, Genetic , Xenograft Model Antitumor Assays
9.
Blood ; 137(5): 624-636, 2021 02 04.
Article in English | MEDLINE | ID: mdl-32902645

ABSTRACT

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Subject(s)
Fetal Blood/cytology , Immunotherapy, Adoptive , Interleukin-15/genetics , Killer Cells, Natural/drug effects , Neoplasm Proteins/antagonists & inhibitors , Suppressor of Cytokine Signaling Proteins/antagonists & inhibitors , Aerobiosis , Animals , Antigens, CD19/immunology , Burkitt Lymphoma/pathology , Burkitt Lymphoma/therapy , CRISPR-Cas Systems , Cell Line, Tumor , Gene Knockout Techniques , Glycolysis , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/transplantation , Mechanistic Target of Rapamycin Complex 1/physiology , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-akt/physiology , Receptors, Chimeric Antigen , Signal Transduction/physiology , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/physiology , Xenograft Model Antitumor Assays
10.
bioRxiv ; 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32995792

ABSTRACT

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

11.
Clin Cancer Res ; 26(14): 3565-3577, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32299815

ABSTRACT

PURPOSE: Cytomegalovirus (CMV) antigens occur in glioblastoma but not in normal brains, making them desirable immunologic targets. PATIENTS AND METHODS: Highly functional autologous polyclonal CMV pp65-specific T cells from patients with glioblastoma were numerically expanded under good manufacturing practice compliant conditions and administered after 3 weeks of lymphodepleting dose-dense temozolomide (100 mg/m2) treatment. The phase I component used a 3+3 design, ascending through four dose levels (5 × 106-1 × 108 cells). Treatment occurred every 6 weeks for four cycles. In vivo persistence and effector function of CMV-specific T cells was determined by dextramer staining and multiparameter flow cytometry in serially sampled peripheral blood and in the tumor microenvironment. RESULTS: We screened 65 patients; 41 were seropositive for CMV; 25 underwent leukapheresis; and 20 completed ≥1 cycle. No dose-limiting toxicities were observed. Radiographic response was complete in 1 patient, partial in 2. Median progression-free survival (PFS) time was 1.3 months [95% confidence interval (CI), 0-8.3 months]; 6-month PFS was 19% (95% CI, 7%-52%); and median overall survival time was 12 months (95% CI, 6 months to not reached). Repeated infusions of CMV-T cells paralleled significant increases in circulating CMV+ CD8+ T cells, but cytokine production showing effector activity was suppressed, especially from T cells obtained directly from glioblastomas. CONCLUSIONS: Adoptive infusion of CMV-specific T cells after lymphodepletion with dose-dense temozolomide was well tolerated. But apparently CMV seropositivity does not guarantee tumor susceptibility to CMV-specific T cells, suggesting heterogeneity in CMV antigen expression. Moreover, effector function of these T cells was attenuated, indicating a requirement for further T-cell modulation to prevent their dysfunction before conducting large-scale clinical studies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/therapy , Glioblastoma/therapy , Immunotherapy, Adoptive/methods , Viral Matrix Proteins/immunology , Adult , Cytomegalovirus/immunology , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/mortality , Cytomegalovirus Infections/virology , Female , Glioblastoma/immunology , Glioblastoma/mortality , Glioblastoma/virology , Humans , Leukapheresis , Lymphocyte Depletion/methods , Male , Middle Aged , Progression-Free Survival , Temozolomide/administration & dosage , Transplantation, Autologous/methods , Tumor Microenvironment/immunology
12.
Platelets ; 31(8): 1080-1084, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-31931672

ABSTRACT

Desialylation of platelets results in platelet clearance by the Ashwell-Morrell Receptors (AMR) found on hepatocytes. Studies suggest that oseltamivir phosphate inhibits human sialidases, enzymes responsible for desialylation, extending the lifespan of circulating platelets. We thus evaluated, the effects of oseltamivir on platelet count (PC) following treatment. Of the 385 patients evaluated for influenza, 283 (73.5%) were influenza-infected. Of the 283 infected patients, 241 (85.2%) received oseltamivir (I + O+) while 42 patients did not (I + O-). One hundred two non-infected patients received oseltamivir (I-O+). The two groups receiving oseltamivir (I + O+, I-O+), demonstrated a statistically greater increase in the PC (57.53 ± 93.81, p = .013 and 50.79 ± 70.59, p = .023, respectively) relative to the group that did not (18.45 ± 89.33 × 109/L). The observed increase in PC was statistically similar (p = .61) in both groups receiving oseltamivir (I + O+, I-O+), suggesting that this effect is independent of influenza. Comparing clinical characteristics between responders and non-responders to oseltamivir treatment showed that only duration of oseltamivir treatment (AOR = 1.30, 95% CI 1.05-1.61, p = .015) was associated with a positive PC response. Our findings suggest a correlation between oseltamivir treatment and an increase in PCs. Future studies assessing the possible uses of oseltamivir in medical conditions characterized by diminished or defective thrombopoiesis are warranted.


Subject(s)
Oseltamivir/blood , Platelet Count/methods , Aged , Humans , Middle Aged , Retrospective Studies
13.
Blood Adv ; 3(23): 4117-4130, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31821460

ABSTRACT

Natural killer (NK) cells are highly heterogeneous, with vast phenotypic and functional diversity at the single-cell level. They are involved in the innate immune response against malignant and virus-infected cells. To understand the effect of NK diversity during immune recovery on the antitumor response after cord blood transplantation (CBT), we used high-dimensional mass cytometry and the metrics of NK cell diversity to study the NK cell repertoire in serial samples from 43 CBT recipients. A higher-diversity index based on single-cell combinatorial phenotypes was significantly associated with a lower risk for relapse after CBT (P = .005). Cytomegalovirus reactivation was a major factor in the development of a more diverse NK repertoire after CBT. Notably, we identified a group of patients whose CB-derived NK cells after transplantation possessed an immature phenotype (CB-NKim), characterized by poor effector function and a low diversity index. Frequencies of CB-NKim of 11.8% or higher during the early post-CBT recovery phase were highly predictive for relapse (area under the curve [AUC], 0.979), a finding that was validated in a second independent cohort of patients (n = 25; AUC, 0.977). Moreover, we showed that the maturation, diversity, and acquisition of effector function by CB-NKim early after CBT were driven by interleukin 15. Our data indicate that the diversity of the NK cell repertoire after CBT contributes importantly to the risk for subsequent relapse. We suggest that the use of diversity metrics and high-dimensional mass cytometry may be useful tools in predicting clinical outcomes and informing the design of therapeutic strategies to prevent relapse after CBT.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Killer Cells, Natural/immunology , Humans , Recurrence
14.
Br J Haematol ; 177(3): 457-466, 2017 05.
Article in English | MEDLINE | ID: mdl-28295190

ABSTRACT

Multiple myeloma (MM) is a disease with known immune dysregulation. Natural killer (NK) cells have shown preclinical activity in MM. We conducted a first-in-human study of umbilical cord blood-derived (CB) NK cells for MM patients undergoing high dose chemotherapy and autologous haematopoietic stem cell transplantation (auto-HCT). Patients received lenalidomide (10 mg) on days -8 to -2, melphalan 200 mg/m2 on day -7, CB-NK cells on day -5 and auto-HCT on day 0. Twelve patients were enrolled, three on each of four CB-NK cell dose levels: 5 × 106 , 1 × 107 , 5 × 107 and 1 × 108 CB-NK cells/kg. Ten patients had either high-risk chromosomal changes or a history of relapsed/progressed disease. There were no infusional toxicities and no graft-versus-host disease. One patient failed to engraft due to poor autologous graft quality and was rescued with a back-up autologous graft. Overall, 10 patients achieved at least a very good partial response as their best response, including eight with near complete response or better. With a median follow-up of 21 months, four patients have progressed or relapsed, two of whom have died. CB-NK cells were detected in vivo in six patients, with an activated phenotype (NKG2D+ /NKp30+ ). These data warrant further development of this novel cellular therapy.


Subject(s)
Fetal Blood/immunology , Hematopoietic Stem Cell Transplantation/methods , Killer Cells, Natural/transplantation , Multiple Myeloma/therapy , Adoptive Transfer/methods , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Separation/methods , Combined Modality Therapy , Female , Flow Cytometry/methods , Graft Survival , Humans , Lenalidomide , Male , Melphalan/administration & dosage , Middle Aged , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Treatment Outcome
15.
Front Immunol ; 8: 1937, 2017.
Article in English | MEDLINE | ID: mdl-29375566

ABSTRACT

Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). A number of studies support a role for B cells in the pathogenesis of cGvHD. In this study, we report the presence of an expanded population of CD19+CD21- B cells with features of exhaustion in the peripheral blood of patients with cGvHD. CD21- B cells were significantly increased in patients with active cGvHD compared to patients without cGvHD and healthy controls (median 12.2 versus 2.12 versus 3%, respectively; p < 0.01). Compared with naïve (CD27-CD21+) and classical memory (CD27+CD21+) B cells, CD19+CD21- B cells in cGvHD were CD10 negative, CD27 negative and CD20hi, and exhibited features of exhaustion, including increased expression of multiple inhibitory receptors such as FCRL4, CD22, CD85J, and altered expression of chemokine and adhesion molecules such as CD11c, CXCR3, CCR7, and CD62L. Moreover, CD21- B cells in cGvHD patients were functionally exhausted and displayed poor proliferative response and calcium mobilization in response to B-cell receptor triggering and CD40 ligation. Finally, the frequencies of circulating CD21- B cells correlated with cGvHD severity in patients after HSCT. Our study further characterizes B cells in chronic cGVHD and supports the use of CD21-CD27-CD10- B cell frequencies as a biomarker of disease severity.

16.
Front Immunol ; 8: 1773, 2017.
Article in English | MEDLINE | ID: mdl-29379494

ABSTRACT

Chronic lymphocytic leukemia (CLL) cells possess regulatory functions comparable to those of normal B10 cells, a regulatory B cell subset that suppresses effector T-cell function through STAT3-mediated IL-10 production. However, the mechanisms governing IL-10 production by CLL cells are not fully understood. Here, we show that the CXC chemokine ligand 12 (CXCL12)-CXCR4-STAT3 axis regulates IL-10 production by CLL cells and their ability to suppress T-cell effector function through an IL-10 mediated mechanism. Knockdown of STAT3 significantly impaired the ability of CLL cells to produce IL-10. Furthermore, experiments to assess the role of lenalidomide, an immunomodulatory agent with direct antitumor effect as well as pleiotropic activity on the immune system, showed that this agent prevents a CXCL12-induced increase in p-S727-STAT3 and the IL-10 response by CLL cells. Lenalidomide also suppressed IL-10-induced Y705-STAT3 phosphorylation in healthy T cells, thus reversing CLL-induced T-cell dysfunction. We conclude that the capacity of CLL cells to produce IL-10 is mediated by the CXCL12-CXCR4-STAT3 pathway and likely contributes to immunodeficiency in patients. Lenalidomide appears to be able to reverse CLL-induced immunosuppression through including abrogation of the CXCL12-CXCR4-S727-STAT3-mediated IL-10 response by CLL cells and prevention of IL-10-induced phosphorylation of Y705-STAT3 in T cells.

17.
Blood ; 129(6): 740-758, 2017 02 09.
Article in English | MEDLINE | ID: mdl-27821506

ABSTRACT

The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA-CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161- progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Leukemic , Immunologic Memory , Influenza, Human/prevention & control , Leukemia, Myeloid, Acute/immunology , NK Cell Lectin-Like Receptor Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/immunology , Antibiotics, Antineoplastic/pharmacology , Antibodies/pharmacology , Biological Transport , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4-Positive T-Lymphocytes/classification , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Cytomegalovirus/drug effects , Cytomegalovirus/growth & development , Cytomegalovirus/immunology , Daunorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Humans , Immunophenotyping , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/virology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/virology , NK Cell Lectin-Like Receptor Subfamily B/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/growth & development , Orthomyxoviridae/immunology , Rhodamines/metabolism , Rhodamines/pharmacology , Signal Transduction , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/pathology
18.
Blood ; 128(24): 2819-2823, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27760759

ABSTRACT

Myelodysplastic syndromes (MDSs) are a group of hematopoietic disorders affecting the myeloid lineage, characterized by cytopenias and clonal evolution to acute myeloid leukemia (AML). We hypothesized that natural killer (NK) cells and their activating killer immunoglobulin-like receptors (aKIRs) influence the immune surveillance and clinical outcome of patients with MDSs. Here, we first examined the distribution of aKIR genes and haplotype in 2 independent cohorts of MDS and AML patients. The median number of aKIR genes was lower in MDS patients than healthy controls (2 vs 3 genes; P = .001), and lower in patients with secondary AML (progressed from MDSs) compared with de novo AML patients (2 vs 3; P = .008) and healthy controls (2 vs 3; P = .006). In a multivariate analysis, the presence of KIR haplotype A (characterized by low aKIR content 0-1) independently predicted a higher risk of conversion to AML (relative risk [RR] with 95% confidence interval [CI], 2.67 [1.13-6.71]; P = .02) and worse adjusted progression-free survival (RR with 95% CI, 2.96 [1.59-5.52]; P = .001) and overall survival (2.25 [1.17-4.31]; P = .02), compared with KIR haplotype B (multiple aKIR genes). These novel findings may help to identify MDS patients with a high risk of disease progression who would likely benefit from adoptive NK-cell therapy.


Subject(s)
Haplotypes/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Receptors, KIR/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/pathology , Disease Progression , Female , Gene Dosage , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Prognosis , Treatment Outcome , Young Adult
19.
Cytotherapy ; 18(10): 1312-24, 2016 10.
Article in English | MEDLINE | ID: mdl-27497700

ABSTRACT

Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.


Subject(s)
Adoptive Transfer/standards , Amyotrophic Lateral Sclerosis/pathology , Cell Separation , Cell- and Tissue-Based Therapy/standards , Primary Cell Culture , T-Lymphocytes, Regulatory/pathology , Adoptive Transfer/methods , Amyotrophic Lateral Sclerosis/immunology , Case-Control Studies , Cell Separation/methods , Cell Separation/standards , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Guideline Adherence/standards , Humans , Immune Tolerance , Interleukin-2/metabolism , Primary Cell Culture/methods , Primary Cell Culture/standards , T-Lymphocytes, Regulatory/immunology
20.
Blood ; 128(10): 1346-61, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27439912

ABSTRACT

Cord blood (CB) offers a number of advantages over other sources of hematopoietic stem cells, including a lower rate of chronic graft-versus-host disease (cGVHD) in the presence of increased HLA disparity. Recent research in experimental models of autoimmunity and in patients with autoimmune or alloimmune disorders has identified a functional group of interleukin-10 (IL-10)-producing regulatory B cells (Bregs) that negatively regulate T-cell immune responses. At present, however, there is no consensus on the phenotypic signature of Bregs, and their prevalence and functional characteristics in CB remain unclear. Here, we demonstrate that CB contains an abundance of B cells with immunoregulatory function. Bregs were identified in both the naive and transitional B-cell compartments and suppressed T-cell proliferation and effector function through IL-10 production as well as cell-to-cell contact involving CTLA-4. We further show that the suppressive capacity of CB-derived Bregs can be potentiated through CD40L signaling, suggesting that inflammatory environments may induce their function. Finally, there was robust recovery of IL-10-producing Bregs in patients after CB transplantation, to higher frequencies and absolute numbers than seen in the peripheral blood of healthy donors or in patients before transplant. The reconstituting Bregs showed strong in vitro suppressive activity against allogeneic CD4(+) T cells, but were deficient in patients with cGVHD. Together, these findings identify a rich source of Bregs and suggest a protective role for CB-derived Bregs against cGVHD development in CB recipients. This advance could propel the development of Breg-based strategies to prevent or ameliorate this posttransplant complication.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Cord Blood Stem Cell Transplantation/adverse effects , Fetal Blood/immunology , Graft vs Host Disease/prevention & control , Hematologic Neoplasms/therapy , Interleukin-10/metabolism , Lymphocyte Activation/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , Female , Graft vs Host Disease/etiology , Hematologic Neoplasms/complications , Humans , Male , Middle Aged , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...