Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
Nutrients ; 16(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39203733

ABSTRACT

Given the health benefits of carotenoids, it is crucial to evaluate their levels in patients undergoing malabsorptive procedures like one anastomosis gastric bypass (OAGB). This study aimed to assess serum carotenoid levels before and 6 months following OAGB. Prospectively collected data from patients who underwent primary OAGB were analyzed. Data included anthropometrics, dietary intake assessments, and biochemical tests. Serum samples were analyzed for lipid profile and serum carotenoids, including lutein, zeaxanthin, α-carotene, ß-carotene, phytofluene, ζ-carotene, and lycopene. Data from 27 patients (median age 47.0 years and 55.6% female) were available before and 6 months post-OAGB. The median pre-surgical BMI was 39.5 kg/m2, and the median excess weight loss at 6 months post-surgery was 63.9%. Significant decreases in all carotenoid levels were observed over time (p < 0.001 for all). A median relative decline of 65.1% in absolute total carotenoid levels and 12.7% in total cholesterol levels were found. No associations were observed between changes in clinical outcomes and carotenoid levels during the study period. This study reveals significant decreases in carotenoid levels within the first 6 months following OAGB. Nutritional intervention studies are needed to explore how incorporating carotenoid-rich foods affects post-surgery carotenoid levels and clinical outcomes.


Subject(s)
Carotenoids , Gastric Bypass , Humans , Gastric Bypass/methods , Female , Carotenoids/blood , Middle Aged , Male , Adult , Prospective Studies , Obesity, Morbid/surgery , Obesity, Morbid/blood , Weight Loss , Body Mass Index , Anastomosis, Surgical , Treatment Outcome
2.
Insects ; 15(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39057254

ABSTRACT

Carotenoids are common and diverse organic compounds with various functional roles in animals. Except for certain aphids, mites, and gall midges, all animals only acquire necessary carotenoids through their diet. The house fly (Musca domestica) is a cosmopolitan pest insect that populates diverse habitats. Its larvae feed on organic substrates that may vary in carotenoid composition according to their specific content. We hypothesized that the carotenoid composition in the adult house fly's body would reflect the carotenoid composition in the larval feed. House fly larvae were reared on diets that differed in carotenoid composition. HPLC analysis of the emerging adult flies indicate that the carotenoid composition of adult house flies is related, but not identical, to the carotenoid composition in its natal substrate. These findings may be developed to help identify potential sources of house fly infestations. Also, it is recommended that rearing substrates of house fly larvae, used for animal feed, should be carefully considered.

3.
Neurobiol Aging ; 133: 16-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38381472

ABSTRACT

A significant progressive decline in beta-carotene (ßC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of ßC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of ß-amyloid plaques and tau hyperphosphorylation. These findings suggest that 9CBC has the potential to be an effective preventive and symptomatic AD therapy.


Subject(s)
Alzheimer Disease , Neuroinflammatory Diseases , Animals , Mice , beta Carotene/pharmacology , beta Carotene/therapeutic use , Alzheimer Disease/drug therapy , Diet , Cognition , Disease Models, Animal , Plaque, Amyloid
4.
Cytokine ; 167: 156212, 2023 07.
Article in English | MEDLINE | ID: mdl-37146542

ABSTRACT

The pathophysiology of atherosclerosis initiation and progression involves many inflammatory cytokines, one of them is interleukin (IL)-1α that has been shown to be secreted by activated macrophages. We have previously shown that IL-1α from bone marrow-derived cells is critical for early atherosclerosis development in mice. It is known that endoplasmic reticulum (ER) stress in macrophages is involved in progression to more advanced atherosclerosis, but it is still unknown whether this effect is mediated through cytokine activation or secretion. We previously demonstrated that IL-1α is required in ER stress-induced activation of inflammatory cytokines in hepatocytes and in the associated induction of steatohepatitis. In the current study, we aimed to examine the potential role of IL-1α in ER stress-induced activation of macrophages, which is relevant to progression of atherosclerosis. First, we demonstrated that IL-1α is required for atherosclerosis development and progression in the apoE knockout (KO) mouse model of atherosclerosis. Next, we showed that ER stress in mouse macrophages results in the protein production and secretion of IL-1α in a dose-dependent manner, and that IL-1α is required in ER stress-induced production of the C/EBP homologous protein (CHOP), a critical step in ER stress-mediated apoptosis. We further demonstrated that IL-1α-dependent CHOP production in macrophages is specifically mediated through the PERK-ATF4 signaling pathway. Altogether, these findings highlight IL-1α as a potential target for prevention and treatment of atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Interleukin-1alpha , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/metabolism , Endoplasmic Reticulum Stress , Gene Deletion , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Macrophages/metabolism , Mice, Knockout
5.
Mar Drugs ; 20(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35877726

ABSTRACT

Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis ß-carotene-rich Dunaliella bardawil alga as the sole source of vitamin A on obesity-associated comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin A-deficient diet supplemented with either vitamin A (HFD) or ß-carotene (BC) (HFD-BC). Vitamin A levels in the liver, WATs, and BAT of the HFD-BC group were 1.5-2.4-fold higher than of the HFD group. BC concentrations were 5-6-fold greater in BAT compared to WAT in the HFD-BC group. The eWAT mRNA levels of the Mcp-1 and Cd68 were 1.6- and 2.1-fold lower, respectively, and the plasma cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations.


Subject(s)
Chlorophyceae , beta Carotene , Adipose Tissue/metabolism , Animals , Chlorophyceae/metabolism , Diet, High-Fat/adverse effects , Gene Expression , Liver , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Triglycerides/metabolism , Vitamin A/pharmacology , beta Carotene/metabolism , beta Carotene/pharmacology
6.
Article in English | MEDLINE | ID: mdl-34487973

ABSTRACT

Maternal docosahexaenoic acid (DHA) is required during pregnancy to supply for normal fetal growth and development. This pilot study aimed to assess the unknown fatty acid (FA) composition in a cohort of non-pregnant and pregnant Israeli women at term and their offspring on a normal diet without n-3 FA supplementation. The fatty acid profile, analyzed using gas chromatography, showed significantly higher plasma monounsaturated (MUFA) and lower n-6 FA percent distribution with similar n-3 index, in pregnant compared to non-pregnant women. RBC exhibited significantly higher MUFA with similar n-3 index, in pregnant compared to non-pregnant women. N-3 FA significantly correlated between neonates' plasma, with higher n-3 index, and pregnant women's DHA. Conclusion: DHA levels in non-pregnant and pregnant Israeli women at term were comparable and the DHA in pregnant women's plasma positively correlated with their neonate's level, suggesting an efficient mother-fetus FA transfer and/or fetal fatty acid metabolism to longer FA products.


Subject(s)
Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Maternal-Fetal Exchange , Adult , Arabidopsis Proteins/blood , Carbon-Oxygen Ligases/blood , Case-Control Studies , Docosahexaenoic Acids/blood , Fatty Acids, Essential/blood , Fatty Acids, Unsaturated/blood , Female , Humans , Infant, Newborn , Israel , Maternal Nutritional Physiological Phenomena , Pilot Projects , Pregnancy , Triglycerides/blood , alpha-Linolenic Acid/blood , gamma-Linolenic Acid/blood
7.
J Nutr Biochem ; 91: 108597, 2021 05.
Article in English | MEDLINE | ID: mdl-33545323

ABSTRACT

Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental. Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells, brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring. Three-week-old ALA offspring showed higher levels of n-3 fatty acids in liver, red blood cell, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a, compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls. The increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of major facilitator superfamily domain containing 2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.


Subject(s)
Brain/metabolism , Dietary Supplements , Docosahexaenoic Acids/metabolism , alpha-Linolenic Acid/pharmacology , Animals , Animals, Newborn , Brain/drug effects , Female , Memory/drug effects , Mice , Mice, Inbred C57BL , Pregnancy , Weaning
8.
Nutrients ; 12(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492795

ABSTRACT

Vitamin A deficiency (VAD) is a major health problem, especially in developing countries. In this study, we investigated the effect of VAD from weaning to adulthood in apoE-/- mice. Three-week-old male mice were allocated into four diet groups: I. VAD II. VAD+vitamin A (VA), 1500 IU retinyl-palmitate; III. VAD+ß-carotene (BC), 6 g/kg feed, containing 50% all-trans and 50% 9-cis BC. IV. VAD with BC and VA (BC+VA). After 13 weeks, we assessed the size of atherosclerotic plaques and measured VA in tissues and BC in plasma and tissues. VAD resulted in diminished hepatic VA levels and undetectable brain VA levels compared to the other groups. BC completely replenished VA levels in the liver, and BC+VA led to a two-fold elevation of hepatic VA accumulation. In adipose tissue, mice fed BC+VA accumulated only 13% BC compared to mice fed BC alone. Atherosclerotic lesion area of BC group was 73% lower compared to VAD group (p < 0.05). These results suggest that BC can be a sole source for VA and inhibits atherogenesis.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/etiology , Atherosclerosis/prevention & control , Dietary Supplements , Phytotherapy , Vitamin A Deficiency/drug therapy , beta Carotene/administration & dosage , Animals , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic
9.
Nutr Metab Cardiovasc Dis ; 30(4): 709-716, 2020 04 12.
Article in English | MEDLINE | ID: mdl-32007335

ABSTRACT

BACKGROUND AND AIMS: Mediterranean diet has been associated with decreased cardiovascular morbidity and mortality. Both fish and olive oil are key components of this diet. Therefore, we compared their effects on nonalcoholic fatty liver disease (NAFLD) and atherogenesis in a mouse model, fed a high fat diet. METHODS AND RESULTS: Forty nine, female LDL receptor knockout (LDLR KO) mice were allocated into 3 groups and fed an atherogenic high fat (HF) diet for 9 weeks. The HF group was fed a high fat diet alone. A HF + OO group was fed a HF diet with added olive oil (60 ml/kg feed), and the third group (HF + FO) was fed a HF diet with added fish oil (60 ml/kg feed). Both additions of fish and olive oil, significantly decreased plasma cholesterol elevation compared to HF diet. Nevertheless, only fish oil addition reduced significantly atherosclerotic lesion area by 51% compared to HF group. Liver levels of eicosapentenoic (EPA) and docosahexaenoic (DHA) acids were several folds higher in HF + FO group than in HF and HF + OO groups. Liver levels of oleic acid were higher in HF + OO compared to the other groups. Moreover, Fish oil addition significantly decreased NAFLD scores related to steatosis and inflammation and lowered the expression of the inflammatory genes interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP1). CONCLUSION: These results suggest that fish oil addition on top of an atherogenic, HF diet, is beneficial, while olive oil is not, in its effect on plaque formation and NAFLD in LDLR KO mice.


Subject(s)
Atherosclerosis/prevention & control , Diet, High-Fat , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Olive Oil/administration & dosage , Animals , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Biomarkers/blood , Chemokine CCL2/metabolism , Cholesterol/blood , Disease Models, Animal , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Female , Interleukin-6/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Oleic Acid/administration & dosage , Oleic Acid/metabolism , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Time Factors
10.
Adv Med Sci ; 65(1): 111-119, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923770

ABSTRACT

PURPOSE: Lipoxygenases (LOX) have been implicated in carcinogenesis, however both pro- and anti-carcinogenic effects have been reported in different cancer models. Using transgenic mice, which specifically overexpress human 15-lipoxygenase (ALOX15) in endothelial cells (EC), we previously demonstrated significant inhibition of tumor development. In the Lewis lung carcinoma (LLC) model, the primary tumor developed similarly in both wild type (WT) and ALOX15 overexpressing mice. However, metastases development was significantly inhibited in the transgenic mice. Here, we explored the molecular basis for the anti-metastatic effect of endothelial cell specific ALOX15 overexpression. MATERIALS/METHODS: We used ALOX15 overexpressing mice, and in-vitro cell model to evaluate the molecular effect of ALOX15 on EC and LLC cells. RESULTS: When LLC cells were injected in WT and ALOX15 overexpressing mice, we observed a higher degree of apoptosis and necrosis in primary and metastatic tumors of ALOX15 overexpressing animals. These anti-carcinogenic and anti-metastatic effects were paralleled by augmented expression of cyclin-dependent kinase inhibitor 1A (CDKN1A; p21) and of the peroxisome proliferators-activated receptor (PPAR)γ and by downregulation of the steady state concentrations of connexin26 mRNA. Consistent with these in vivo effects, ALOX15 overexpression in LLC and HeLa cancer cells in vitro significantly reduced cell viability in culture. In contrast, similar treatment of non-cancerous B2B epithelial cells did not impact cell viability. CONCLUSIONS: Taken together, our data suggests that endothelial cell specific overexpression of ALOX15 promotes apoptosis and necrosis in primary and metastatic tumors in mice, by upregulation of P21 and PPARγ expression in adjacent cancer cells.


Subject(s)
Apoptosis , Arachidonate 15-Lipoxygenase/physiology , Biomarkers, Tumor/metabolism , Carcinoma, Lewis Lung/pathology , Disease Models, Animal , Endothelial Cells/pathology , Animals , Biomarkers, Tumor/genetics , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/metabolism , Cell Proliferation , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Cells, Cultured
11.
Mol Immunol ; 117: 101-109, 2020 01.
Article in English | MEDLINE | ID: mdl-31759325

ABSTRACT

INTRODUCTION: The tight regulation of the cytokine network during macrophage activation is of prime importance to enable a fast and potent innate immune response against exogenous pathogens. The inflammation mediating ubiquitin-like protein HLA-F adjacent transcript number 10 (FAT10) was shown to be transcriptionally regulated by and also regulate the nuclear factor-κB (NFκB) signaling pathway. However, very little is known about the regulation of FAT10 gene expression during macrophage activation. RESULTS: RNA sequencing of interferon (IFN)γ-stimulated mouse peritoneal macrophages analyzed by ingenuity pathway analysis revealed significant involvement of tumor necrosis factor receptor 1 (TNFR1) signaling in addition to IFNγ signaling. Subsequently, IFNγ robustly upregulated FAT10 expression compared to a milder induction seen with TNFα or lipopolysaccharide (LPS) stimulation. While low dose IFNγ with TNFα synergistically elevated FAT10 expression, preincubation of macrophages with IFNγ strongly augmented TNFα-induced FAT10 expression. Moreover, a short preincubation with IFNγ, which did not elevate FAT10, was sufficient to potentiate the induction of FAT10 by TNFα. A double augmentation mechanism of TNFα signaling was demonstrated, where IFNγ rapidly induced the expression of TNFα and TNFR1, which further augmented the induction of TNFα and TNFR1 expression by TNFα. Importantly, the induction of FAT10 by IFNγ in macrophages from TNFα-deficient or TNFR1-deficient mice was completely inhibited compared to macrophages from wild type (WT) mice. Finally, we show that TNFα-induced FAT10 expression is dependent on NFκB signaling. CONCLUSION: IFNγ potentiates the TNFα/TNFR1 signaling pathway to induce FAT10 expression in mouse macrophages, mediated through NFκB network.


Subject(s)
Gene Expression Regulation/immunology , Interferon-gamma/immunology , Macrophage Activation/immunology , Macrophages/immunology , Signal Transduction/immunology , Ubiquitins/biosynthesis , Animals , Immunity, Innate/immunology , Interferon-gamma/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , NF-kappa B/immunology , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
12.
J Nutr ; 150(1): 38-46, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31504714

ABSTRACT

BACKGROUND: Low tissue concentrations of carotenoids have been suggested to contribute to insulin resistance in obesity. OBJECTIVES: The objectives of the study were to 1) evaluate the relations of adipose tissue and serum carotenoids with body fat, abdominal fat distribution, muscle, adipose tissue and liver insulin resistance, and dietary intake; 2) evaluate the relations and distributions of carotenoids detected in adipose tissue and serum; and 3) compare serum carotenoids and retinol concentrations in subjects with and without obesity. METHODS: Post hoc analysis of serum and adipose tissue carotenoids in individuals [n = 80; 31 men, 49 women; age (mean ± SEM): 51.4 ± 1.1 y] who participated in 2 separate studies conducted at the Clinical Research Facility at the Garvan Institute of Medical Research (Sydney) between 2008 and 2013. Retinol, α-carotene, ß-carotene, ζ-carotene, lutein, lycopene, phytoene, and phytofluene were measured using HPLC. Body composition was measured by dual-energy X-ray absorptiometry. Insulin resistance was measured by 2-step hyperinsulinemic-euglycemic clamps with deuterated glucose (n = 64), and subcutaneous and visceral abdominal volume and liver and pancreatic fat by MRI (n = 60). Periumbilical subcutaneous fat biopsy was performed and carotenoids and retinol measured in the tissue (n = 16). RESULTS: We found that ζ-carotene, phytoene, and phytofluene were stored in considerable amounts in adipose tissue (25% of adipose tissue carotenoids). Carotenoid concentrations in adipose tissue and serum correlated significantly, but they followed different distributions: ζ-carotene was 3-fold higher in adipose tissue compared with serum, while lutein and lycopene made up 20% and 21% of serum carotenoids compared with 2% and 12% of adipose tissue carotenoids, respectively. Liver (P ≤ 0.028) and adipose tissue (P = 0.023), but not muscle (P ≥ 0.16), insulin resistance correlated inversely with many of the serum carotenoids. CONCLUSIONS: Multiple serum and adipose tissue carotenoids are associated with favorable metabolic traits, including insulin sensitivity in liver and adipose tissue in humans.


Subject(s)
Adipose Tissue/metabolism , Carotenoids/blood , Carotenoids/metabolism , Insulin Resistance , Obesity/blood , Adult , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation , Glucose , Humans , Male , Middle Aged , Risk Factors
13.
BMJ Open Diabetes Res Care ; 7(1): e000650, 2019.
Article in English | MEDLINE | ID: mdl-31749969

ABSTRACT

Objective: While extensive research revealed that interleukin (IL)-1ß contributes to insulin resistance (IR) development, the role of IL-1α in obesity and IR was scarcely studied. Using control, whole body IL-1α knockout (KO) or myeloid-cell-specific IL-1α-deficient mice, we tested the hypothesis that IL-1α deficiency would protect against high-fat diet (HFD)-induced obesity and its metabolic consequences. Research design and methods: To induce obesity and IR, control and IL-1α KO mice were given either chow or HFD for 16 weeks. Glucose tolerance test was performed at 10 and 15 weeks, representing early and progressive stages of glucose intolerance, respectively. Liver and epididymal white adipose tissue (eWAT) samples were analyzed for general morphology and adipocyte size. Plasma levels of adiponectin, insulin, total cholesterol and triglyceride (TG), lipoprotein profile as well as hepatic lipids were analyzed. Expression of lipid and inflammation-related genes in liver and eWAT was analyzed. Primary mouse hepatocytes isolated from control mice were treated either with dimethyl sulfoxide (DMSO) (control) or 20 ng/mL recombinant IL-1α for 24 hours and subjected to gene expression analysis. Results: Although total body weight gain was similar, IL-1α KO mice showed reduced adiposity and were completely protected from HFD-induced glucose intolerance. In addition, plasma total cholesterol and TG levels were lower and HFD-induced accumulation of liver TGs was completely inhibited in IL-1α KO compared with control mice. Expression of stearoyl-CoA desaturase1 (SCD1), fatty acid synthase (FASN), elongation of long-chain fatty acids family member 6 (ELOVL6), acetyl-CoA carboxylase (ACC), key enzymes that promote de-novo lipogenesis, was lower in livers of IL-1α KO mice. Treatment with recombinant IL-1α elevated the expression of ELOVL6 and FASN in mouse primary hepatocytes. Finally, mice with myeloid-cell-specific deletion of IL-1α did not show reduced adiposity and improved glucose tolerance. Conclusions: We demonstrate a novel role of IL-1α in promoting adiposity, obesity-induced glucose intolerance and liver TG accumulation and suggest that IL-1α blockade could be used for treatment of obesity and its metabolic consequences.


Subject(s)
Adiposity , Diet, High-Fat/adverse effects , Glucose Intolerance/prevention & control , Interleukin-1alpha/physiology , Lipogenesis , Liver/pathology , Obesity/pathology , Animals , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/prevention & control , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Glucose Tolerance Test , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Knockout , Mice, Obese , Obesity/etiology , Obesity/metabolism
14.
Mol Med Rep ; 17(2): 2488-2492, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29207114

ABSTRACT

Atherosclerosis and Alzheimer's disease (AD) are a major cause of morbidity and mortality in Western societies. These diseases share common risk factors, which are exhibited in old age, including hypertension, diabetes, hypercholesterolemia and apolipoprotein (Apo) ε4 allele. We previously demonstrated that factor XI (FXI) deficiency in mice reduced the atherosclerotic plaque area in coronary sinuses and the aortic arch. This led us to investigate whether FXI deficiency in elderly ApoE knockout (KO) mice would decrease pathological alterations compatible with atherosclerosis and AD. The present study used ApoE/factor XI double KO (ApoE/FXI DKO) mice aged 64 weeks and age­matched ApoE KO mice to serve as a control group. The ApoE KO mice developed an advanced atherosclerotic lesion area in the aortic arch, which was reduced by 33% in the DKO mice. However, neither atherosclerosis nor AD­associated pathological alterations in the elderly mice brains were observed in either the DKO mice or the ApoE KO mice. The results advocate a dichotomy between the brain and peripheral blood vessels. Therefore, the ApoE KO and DKO mice cannot serve as mouse models for studying AD or pathological brain changes compatible with atherosclerosis. The mechanism by which ApoE KO protects against brain pathology should be further studied as it may prove helpful for future treatment of senile dementia.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/pathology , Aorta/pathology , Apolipoproteins E/deficiency , Atherosclerosis/genetics , Atherosclerosis/pathology , Alzheimer Disease/metabolism , Animals , Aorta/metabolism , Atherosclerosis/metabolism , Brain/metabolism , Brain/pathology , Cytokines/metabolism , Disease Models, Animal , Male , Mice , Mice, Knockout
15.
Mol Reprod Dev ; 84(6): 460-467, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28337831

ABSTRACT

Follicle-stimulating hormone receptor (FSHR) is a pivotal regulator of ovarian response to hormonal stimulation. Inflammatory conditions have been linked to lower FSHR expression in granulosa cells (GCs) as well as an attenuated response to hormonal stimulation. The current study aimed to reveal if deficiency and/or blockage of the pro-inflammatory cytokine interleukin 1-alpha (IL1A) increased Fshr expression in rodent GCs. We found elevated Fshr transcript abundance, as assessed by quantitative PCR, in primary GCs isolated from Il1a-knockout compared to wild-type mice, and that the expression of FSHR is significantly higher in Il1a-knockout compared to wild-type ovaries. Supplementing GC cultures with recombinant IL1A significantly lowered Fshr expression in these cells. In accordance with the Fshr expression pattern, proliferation of GCs was higher in follicles from Il1a-knockout mice compared to wild-type mice, as indicated by the MKI67 immunohistochemical staining. Furthermore, treating wild-type mice with anakinra, an IL1 receptor 1 antagonist, significantly increased the expression of Fshr in primary GCs from treated compared to control mice. These data highlight an important interdependency between the potent pro-inflammatory cytokine IL1A and Fshr expression.


Subject(s)
Gene Expression Regulation , Granulosa Cells/metabolism , Interleukin-1alpha/metabolism , Receptors, FSH/biosynthesis , Animals , Female , Granulosa Cells/cytology , Interleukin-1alpha/genetics , Mice , Mice, Knockout , Receptors, FSH/genetics
16.
PLoS One ; 11(11): e0166195, 2016.
Article in English | MEDLINE | ID: mdl-27824936

ABSTRACT

Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein E4/metabolism , Brain/metabolism , Lipoproteins/blood , Lipoproteins/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoprotein E3/metabolism , Brain/drug effects , Genotype , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/metabolism , Peptides/pharmacology
17.
Nutrients ; 8(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447665

ABSTRACT

Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-ß-carotene (9-cis-ßc) is a precursor for 9-cis-retinoic-acid (9-cis-RA), which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-ßc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with ßc from the alga Dunaliella led to ßc accumulation in peritoneal macrophages. 9-cis-ßc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from ßc in RAW264.7 macrophages. Furthermore, 9-cis-ßc, as well as all-trans-ßc, significantly increased cholesterol efflux to high-density lipoprotein (HDL) by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-ßc augmented cholesterol efflux from macrophages ex vivo. 9-cis-ßc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE) and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-ßc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of ßc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.


Subject(s)
Atherosclerosis/prevention & control , Cholesterol, HDL/metabolism , Dietary Supplements , Lipid Regulating Agents/therapeutic use , Macrophages, Peritoneal/metabolism , Up-Regulation , beta Carotene/analogs & derivatives , ATP Binding Cassette Transporter 1/agonists , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/agonists , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Apolipoproteins E/agonists , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Chlorophyta/chemistry , Cholesterol, HDL/blood , Enzyme Induction , Lipid Regulating Agents/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phytoplankton/chemistry , RAW 264.7 Cells , Receptors, LDL/genetics , Receptors, LDL/metabolism , Retinoic Acid 4-Hydroxylase/chemistry , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , beta Carotene/metabolism , beta Carotene/therapeutic use
18.
Arterioscler Thromb Vasc Biol ; 36(3): 475-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26800563

ABSTRACT

OBJECTIVE: Atherosclerosis and atherothrombosis are still major causes of mortality in the Western world, even after the widespread use of cholesterol-lowering medications. Recently, an association between local thrombin generation and atherosclerotic burden has been reported. Here, we studied the role of factor XI (FXI) deficiency in the process of atherosclerosis in mice. APPROACH AND RESULTS: Apolipoprotein E/FXI double knockout mice, created for the first time in our laboratory. There was no difference in cholesterol levels or lipoprotein profiles between apolipoprotein E knockout and double knockout mice. Nevertheless, in 24-week-old double knockout mice, the atherosclerotic lesion area in the aortic sinus was reduced by 32% (P=0.004) in comparison with apolipoprotein E knockout mice. In 42-week-old double knockout mice, FXI deficiency inhibited atherosclerosis progression significantly in the aortic sinus (25% reduction, P=0.024) and in the aortic arch (49% reduction, P=0.028), with a prominent reduction of macrophage infiltration in the atherosclerotic lesions. CONCLUSIONS: FXI deprivation was shown to slow down atherogenesis in mice. The results suggest that the development of atherosclerosis can be prevented by targeting FXI.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Apolipoproteins E/deficiency , Atherosclerosis/prevention & control , Factor XI Deficiency/metabolism , Factor XI/metabolism , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/blood , Cholesterol/blood , Disease Models, Animal , Factor XI/genetics , Factor XI Deficiency/blood , Factor XI Deficiency/genetics , Genetic Predisposition to Disease , Lipoproteins, LDL/blood , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic
19.
Obes Surg ; 25(12): 2443-50, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26446490

ABSTRACT

BACKGROUND: The lymphatic system is responsible for the absorption of fats from the digestive system, conveying 60-70 % of ingested fat to the blood stream. From the anatomical point of view, all the lymphatic drainage from the lower half of the body converges in the abdomen to enter the thoracic duct. This experimental study aim was to study the result of thoracic duct narrowing (TDN), an innovative surgical technique, on weight gain restrain in high-fat diet-fed rats. METHODS: Forty-seven rats were allocated into three groups: thoracic duct narrowing ("S"-surgery), sham operation ("CS"-control surgery), and no surgery ("C"-control). All rats were fed with high-fat, cholesterol-rich diet. Food consumption and metabolic syndrome parameters including weight gain, plasma lipids and glucose, blood pressure, and viscera weight and histopathology were analyzed. RESULTS: Thoracic duct narrowing was proved simple and safe surgical procedure in the rat model. TDN induced weight gain restrain, associated with mild hepatic steatosis compared to moderate-severe hepatic steatosis in control groups. Splenomegaly and splenic fatty histiocytes were shown in the treated animals. CONCLUSIONS: TDN improved several parameters of the metabolic syndrome in high-fat diet-fed rats. TDN carries the potential of innovative obesity treatment using the lymphatic route of lipid absorption.


Subject(s)
Thoracic Duct/surgery , Animals , Diet, High-Fat , Models, Animal , Rats , Rats, Wistar , Weight Gain
20.
J Hepatol ; 63(4): 926-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26022690

ABSTRACT

BACKGROUND & AIMS: ER stress promotes liver fat accumulation and induction of inflammatory cytokines, which contribute to the development of steatohepatitis. Unresolved ER stress upregulates the pro-apoptotic CHOP. IL-1α is localized to the nucleus in apoptotic cells, but is released when these cells become necrotic and induce sterile inflammation. We investigated whether IL-1α is involved in ER stress-induced apoptosis and steatohepatitis. METHODS: We employed WT and IL-1α-deficient mice to study the role of IL-1α in ER stress-induced steatohepatitis. RESULTS: Liver CHOP mRNA was induced in a time dependent fashion in the atherogenic diet-induced steatohepatitis model, and was twofold lower in IL-1α deficient compared to WT mice. In the ER stress-driven steatohepatitis model, IL-1α deficiency decreased the elevation in serum ALT levels, the number of apoptotic cells (measured as caspase-3-positive hepatocytes), and the expression of IL-1ß, IL-6, TNFα, and CHOP, with no effect on the degree of fatty liver formation. IL-1α was upregulated in ER-stressed-macrophages and the protein was localized to the nucleus. IL-1ß mRNA and CHOP mRNA and protein levels were lower in ER-stressed-macrophages from IL-1α deficient compared to WT mice. ER stress induced the expression of IL-1α and IL-1ß also in mouse primary hepatocytes. Recombinant IL-1α treatment in hepatocytes did not affect CHOP expression but upregulated both IL-1α and IL-1ß mRNA levels. CONCLUSION: We show that IL-1α is upregulated in response to ER stress and IL-1α deficiency reduces ER stress-induced CHOP expression, apoptosis and steatohepatitis. As a dual function cytokine, IL-1α may contribute to the induction of CHOP intracellularly, while IL-1α released from necrotic cells accelerates steatohepatitis via induction of inflammatory cytokines by neighboring cells.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation , Interleukin-1alpha/deficiency , Liver Diseases/genetics , RNA, Messenger/genetics , Transcription Factor CHOP/genetics , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Interleukin-1alpha/biosynthesis , Interleukin-1alpha/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription Factor CHOP/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL