Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 23(14): 3629-40, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24549038

ABSTRACT

Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Face/abnormalities , Immunologic Deficiency Syndromes/genetics , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Telomere Shortening , Telomere/metabolism , Cells, Cultured , Cellular Reprogramming , Cellular Senescence , Chromosome Aberrations , Chromosomes, Human , DNA Methylation , DNA-Binding Proteins/metabolism , Face/physiopathology , Female , Fibroblasts/physiology , Humans , Immunologic Deficiency Syndromes/physiopathology , Induced Pluripotent Stem Cells/cytology , Male , Primary Immunodeficiency Diseases , DNA Methyltransferase 3B
2.
Front Oncol ; 3: 35, 2013.
Article in English | MEDLINE | ID: mdl-23450006

ABSTRACT

Mutations in the human DNA methyltransferase 3B (DNMT3B) gene lead to ICF (immunodeficiency, centromeric region instability, and facial anomalies) syndrome type I. We have previously described a telomere-related phenotype in cells from these patients, involving severe hypomethylation of subtelomeric regions, abnormally short telomeres and high levels of telomeric-repeat-containing RNA (TERRA). Here we demonstrate that ICF-patient fibroblasts carry abnormally short telomeres at a low population doubling (PD) and enter senescence prematurely. Accordingly, we attempted to rescue the senescence phenotype by ectopic expression of human telomerase, which led to elongated telomeres with hypomethylated subtelomeres. The senescence phenotype was overcome under these conditions, thus dissociating subtelomeric-DNA hypomethylation per se from the senescence phenotype. In addition, we examined whether the subtelomeric methylation could be restored by expression of a normal copy of full length DNMT3B1 in ICF fibroblasts. Ectopic expression of DNMT3B1 failed to rescue the abnormal hypomethylation at subtelomeres. However, partial rescue of subtelomeric-hypomethylation was achieved by co-expression of DNMT3B1 together with DNA methyltransferase 3-like (DNMT3L), encoding a protein that functions as a stimulator of DNMT3A and DNMT3B. DNMT3B1 and DNMT3L are predominantly expressed during early embryonic development, suggesting that de novo subtelomeric DNA methylation during crucial stages of human embryonic development may be necessary for setting and maintaining normal telomere length.

3.
Epigenetics ; 6(1): 63-75, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20861676

ABSTRACT

Human induced pluripotent stem (hiPS) cells provide therapeutic promises, as well as a potent in vitro model for studying biological processes which take place during human embryonic development and subsequent differentiation in normal and disease states. The epigenetic characteristics of iPS cells are reprogrammed to the embryonic state at which they acquire pluripotency. In addition, telomeres in hiPS cell must elongate sufficiently to provide the necessary replicative potential. Recent studies have demonstrated that the epigenetic characteristics of telomeric and subtelomeric regions are pivotal in regulating telomere length. Here we study telomere length, subtelomeric DNA methylation and telomeric-repeat-containing RNA (TERRA) expression in several hiPS cell clones derived from normal neonatal foreskin fibroblasts. We find that telomeres lengthen significantly in hiPS cells in comparison to the parental fibroblast source, and progressively shorten after differentiation back into fibroblast-like cells, concomitantly with telomerase activation and down-regulation, respectively. Subtelomeres in hiPS cells were found to be generally hypermethylated in comparison to the parental source. However bisulfite analysis revealed that at several subtelomeres examined, methylation levels differed between hiPS clones and that both de novo methylation and demethylation processes occurred during telomere reprogramming. Notably, although subtelomeres were in general very highly methylated, TERRA levels were elevated in hiPS cells, albeit to different degrees in the various clones. TERRA elevation may reflect enhanced stability or impaired degradation in hiPS cells, and/or alternatively, increased transcription from the hypomethylated subtelomeres. We suggest that TERRA may play a role in regulation of appropriate telomere function and length in hiPS cells.


Subject(s)
Cell Dedifferentiation/physiology , Cell Differentiation/physiology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Telomere/metabolism , Cells, Cultured , DNA Methylation/physiology , Fibroblasts/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Male
SELECTION OF CITATIONS
SEARCH DETAIL