Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLOS Digit Health ; 3(4): e0000484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620037

ABSTRACT

Few studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries. For adults, we used a federated learning approach whereby we ran Cox proportional hazard models locally at each healthcare system and performed a meta-analysis on the aggregated results to estimate the overall risk of adverse outcomes across our geographically diverse populations. For children, we reported descriptive statistics separately due to their low frequency of neurological involvement and poor outcomes. Among the 106,229 hospitalized COVID-19 patients (104,031 patients ≥18 years; 2,198 patients <18 years, January 2020-October 2021), 15,101 (14%) had at least one CNS diagnosis, while 2,788 (3%) had at least one PNS diagnosis. After controlling for demographics and pre-existing conditions, adults with CNS involvement had longer hospital stay (11 versus 6 days) and greater risk of (Hazard Ratio = 1.78) and faster time to death (12 versus 24 days) than patients with no neurological condition (NNC) during acute COVID-19 hospitalization. Adults with PNS involvement also had longer hospital stay but lower risk of mortality than the NNC group. Although children had a low frequency of neurological involvement during COVID-19 hospitalization, a substantially higher proportion of children with CNS involvement died compared to those with NNC (6% vs 1%). Overall, patients with concurrent CNS manifestation during acute COVID-19 hospitalization faced greater risks for adverse clinical outcomes than patients without any neurological diagnosis. Our global informatics framework using a federated approach (versus a centralized data collection approach) has utility for clinical discovery beyond COVID-19.

2.
NPJ Digit Med ; 7(1): 82, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553625

ABSTRACT

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, dynamic scheduling of follow-ups, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers. The life-critical nature of healthcare applications necessitates establishing a unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation metrics proposed for various generic large language models (LLMs) demonstrate a lack of comprehension regarding medical and health concepts and their significance in promoting patients' well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building, ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to the assessment of interactive conversational models in healthcare. Subsequently, we present a comprehensive set of evaluation metrics designed to thoroughly assess the performance of healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive conversations. Finally, we engage in a discussion concerning the challenges associated with defining and implementing these metrics, with particular emphasis on confounding factors such as the target audience, evaluation methods, and prompt techniques involved in the evaluation process.

3.
PLOS Digit Health ; 2(7): e0000301, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37490472

ABSTRACT

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis. In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients. 30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female. We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively. We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

4.
J Biomed Inform ; 139: 104306, 2023 03.
Article in English | MEDLINE | ID: mdl-36738870

ABSTRACT

BACKGROUND: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients. METHODS: We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 30 September 2021. We analyzed missing laboratory measurements across sites, missingness stratification by demographic variables, temporal trends of missingness, correlations between labs based on missingness indicators over time, and clustering of groups of labs based on their missingness/ordering pattern. RESULTS: With these analyses, we identified mapping issues faced in seven out of 15 sites. We also identified nuances in data collection and variable definition for the various sites. Temporal trend analyses may support the use of laboratory test result missingness patterns in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships between various labs that reflect clinical behaviors. CONCLUSION: In this work, we use computational approaches to relate missingness patterns to hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time and at multiple sites, where there might be different phases, policies, etc. Changes in missingness could suggest a change in a patient's condition, and patterns of missingness among laboratory measurements could potentially identify clinical outcomes. This allows sites to consider missing data as informative to analyses and help researchers identify which sites are better poised to study particular questions.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Data Collection , Records , Cluster Analysis
5.
NPJ Digit Med ; 5(1): 81, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768548

ABSTRACT

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period. Compared to inpatient controls, inpatient COVID-19 cases were at significant risk for angina pectoris (RR 1.30, 95% CI 1.09-1.55), heart failure (RR 1.22, 95% CI 1.10-1.35), cognitive dysfunctions (RR 1.18, 95% CI 1.07-1.31), and fatigue (RR 1.18, 95% CI 1.07-1.30). Relative to outpatient controls, outpatient COVID-19 cases were at risk for pulmonary embolism (RR 2.10, 95% CI 1.58-2.76), venous embolism (RR 1.34, 95% CI 1.17-1.54), atrial fibrillation (RR 1.30, 95% CI 1.13-1.50), type 2 diabetes (RR 1.26, 95% CI 1.16-1.36) and vitamin D deficiency (RR 1.19, 95% CI 1.09-1.30). Outpatient COVID-19 cases were also at risk for loss of smell and taste (RR 2.42, 95% CI 1.90-3.06), inflammatory neuropathy (RR 1.66, 95% CI 1.21-2.27), and cognitive dysfunction (RR 1.18, 95% CI 1.04-1.33). The incidence of post-acute cardiovascular and pulmonary conditions decreased across time among inpatient cases while the incidence of cardiovascular, digestive, and metabolic conditions increased among outpatient cases. Our study, based on a federated international network, systematically identified robust conditions associated with PASC compared to control groups, underscoring the multifaceted cardiovascular and neurological phenotype profiles of PASC.

6.
JMIR Public Health Surveill ; 8(2): e32355, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35156938

ABSTRACT

BACKGROUND: Advances in automated data processing and machine learning (ML) models, together with the unprecedented growth in the number of social media users who publicly share and discuss health-related information, have made public health surveillance (PHS) one of the long-lasting social media applications. However, the existing PHS systems feeding on social media data have not been widely deployed in national surveillance systems, which appears to stem from the lack of practitioners and the public's trust in social media data. More robust and reliable data sets over which supervised ML models can be trained and tested reliably is a significant step toward overcoming this hurdle. The health implications of daily behaviors (physical activity, sedentary behavior, and sleep [PASS]), as an evergreen topic in PHS, are widely studied through traditional data sources such as surveillance surveys and administrative databases, which are often several months out-of-date by the time they are used, costly to collect, and thus limited in quantity and coverage. OBJECTIVE: The main objective of this study is to present a large-scale, multicountry, longitudinal, and fully labeled data set to enable and support digital PASS surveillance research in PHS. To support high-quality surveillance research using our data set, we have conducted further analysis on the data set to supplement it with additional PHS-related metadata. METHODS: We collected the data of this study from Twitter using the Twitter livestream application programming interface between November 28, 2018, and June 19, 2020. To obtain PASS-related tweets for manual annotation, we iteratively used regular expressions, unsupervised natural language processing, domain-specific ontologies, and linguistic analysis. We used Amazon Mechanical Turk to label the collected data to self-reported PASS categories and implemented a quality control pipeline to monitor and manage the validity of crowd-generated labels. Moreover, we used ML, latent semantic analysis, linguistic analysis, and label inference analysis to validate the different components of the data set. RESULTS: LPHEADA (Labelled Digital Public Health Dataset) contains 366,405 crowd-generated labels (3 labels per tweet) for 122,135 PASS-related tweets that originated in Australia, Canada, the United Kingdom, or the United States, labeled by 708 unique annotators on Amazon Mechanical Turk. In addition to crowd-generated labels, LPHEADA provides details about the three critical components of any PHS system: place, time, and demographics (ie, gender and age range) associated with each tweet. CONCLUSIONS: Publicly available data sets for digital PASS surveillance are usually isolated and only provide labels for small subsets of the data. We believe that the novelty and comprehensiveness of the data set provided in this study will help develop, evaluate, and deploy digital PASS surveillance systems. LPHEADA will be an invaluable resource for both public health researchers and practitioners.


Subject(s)
Public Health Surveillance , Social Media , Exercise , Humans , Sedentary Behavior , Self Report , Sleep , United States
7.
J Med Internet Res ; 24(1): e28749, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35040794

ABSTRACT

BACKGROUND: Crowdsourcing services, such as Amazon Mechanical Turk (AMT), allow researchers to use the collective intelligence of a wide range of web users for labor-intensive tasks. As the manual verification of the quality of the collected results is difficult because of the large volume of data and the quick turnaround time of the process, many questions remain to be explored regarding the reliability of these resources for developing digital public health systems. OBJECTIVE: This study aims to explore and evaluate the application of crowdsourcing, generally, and AMT, specifically, for developing digital public health surveillance systems. METHODS: We collected 296,166 crowd-generated labels for 98,722 tweets, labeled by 610 AMT workers, to develop machine learning (ML) models for detecting behaviors related to physical activity, sedentary behavior, and sleep quality among Twitter users. To infer the ground truth labels and explore the quality of these labels, we studied 4 statistical consensus methods that are agnostic of task features and only focus on worker labeling behavior. Moreover, to model the meta-information associated with each labeling task and leverage the potential of context-sensitive data in the truth inference process, we developed 7 ML models, including traditional classifiers (offline and active), a deep learning-based classification model, and a hybrid convolutional neural network model. RESULTS: Although most crowdsourcing-based studies in public health have often equated majority vote with quality, the results of our study using a truth set of 9000 manually labeled tweets showed that consensus-based inference models mask underlying uncertainty in data and overlook the importance of task meta-information. Our evaluations across 3 physical activity, sedentary behavior, and sleep quality data sets showed that truth inference is a context-sensitive process, and none of the methods studied in this paper were consistently superior to others in predicting the truth label. We also found that the performance of the ML models trained on crowd-labeled data was sensitive to the quality of these labels, and poor-quality labels led to incorrect assessment of these models. Finally, we have provided a set of practical recommendations to improve the quality and reliability of crowdsourced data. CONCLUSIONS: Our findings indicate the importance of the quality of crowd-generated labels in developing ML models designed for decision-making purposes, such as public health surveillance decisions. A combination of inference models outlined and analyzed in this study could be used to quantitatively measure and improve the quality of crowd-generated labels for training ML models.


Subject(s)
Crowdsourcing , Humans , Machine Learning , Public Health Surveillance , Reproducibility of Results , Sleep Quality
8.
NPJ Digit Med ; 4(1): 41, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658681

ABSTRACT

The ubiquitous and openly accessible information produced by the public on the Internet has sparked an increasing interest in developing digital public health surveillance (DPHS) systems. We conducted a systematic scoping review in accordance with the PRISMA extension for scoping reviews to consolidate and characterize the existing research on DPHS and identify areas for further research. We used Natural Language Processing and content analysis to define the search strings and searched Global Health, Web of Science, PubMed, and Google Scholar from 2005 to January 2020 for peer-reviewed articles on DPHS, with extensive hand searching. Seven hundred fifty-five articles were included in this review. The studies were from 54 countries and utilized 26 digital platforms to study 208 sub-categories of 49 categories associated with 16 public health surveillance (PHS) themes. Most studies were conducted by researchers from the United States (56%, 426) and dominated by communicable diseases-related topics (25%, 187), followed by behavioural risk factors (17%, 131). While this review discusses the potentials of using Internet-based data as an affordable and instantaneous resource for DPHS, it highlights the paucity of longitudinal studies and the methodological and inherent practical limitations underpinning the successful implementation of a DPHS system. Little work studied Internet users' demographics when developing DPHS systems, and 39% (291) of studies did not stratify their results by geographic region. A clear methodology by which the results of DPHS can be linked to public health action has yet to be established, as only six (0.8%) studies deployed their system into a PHS context.

9.
J Med Internet Res ; 22(9): e20268, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32975523

ABSTRACT

BACKGROUND: Supervised machine learning (ML) is being featured in the health care literature with study results frequently reported using metrics such as accuracy, sensitivity, specificity, recall, or F1 score. Although each metric provides a different perspective on the performance, they remain to be overall measures for the whole sample, discounting the uniqueness of each case or patient. Intuitively, we know that all cases are not equal, but the present evaluative approaches do not take case difficulty into account. OBJECTIVE: A more case-based, comprehensive approach is warranted to assess supervised ML outcomes and forms the rationale for this study. This study aims to demonstrate how the item response theory (IRT) can be used to stratify the data based on how difficult each case is to classify, independent of the outcome measure of interest (eg, accuracy). This stratification allows the evaluation of ML classifiers to take the form of a distribution rather than a single scalar value. METHODS: Two large, public intensive care unit data sets, Medical Information Mart for Intensive Care III and electronic intensive care unit, were used to showcase this method in predicting mortality. For each data set, a balanced sample (n=8078 and n=21,940, respectively) and an imbalanced sample (n=12,117 and n=32,910, respectively) were drawn. A 2-parameter logistic model was used to provide scores for each case. Several ML algorithms were used in the demonstration to classify cases based on their health-related features: logistic regression, linear discriminant analysis, K-nearest neighbors, decision tree, naive Bayes, and a neural network. Generalized linear mixed model analyses were used to assess the effects of case difficulty strata, ML algorithm, and the interaction between them in predicting accuracy. RESULTS: The results showed significant effects (P<.001) for case difficulty strata, ML algorithm, and their interaction in predicting accuracy and illustrated that all classifiers performed better with easier-to-classify cases and that overall the neural network performed best. Significant interactions suggest that cases that fall in the most arduous strata should be handled by logistic regression, linear discriminant analysis, decision tree, or neural network but not by naive Bayes or K-nearest neighbors. Conventional metrics for ML classification have been reported for methodological comparison. CONCLUSIONS: This demonstration shows that using the IRT is a viable method for understanding the data that are provided to ML algorithms, independent of outcome measures, and highlights how well classifiers differentiate cases of varying difficulty. This method explains which features are indicative of healthy states and why. It enables end users to tailor the classifier that is appropriate to the difficulty level of the patient for personalized medicine.


Subject(s)
Intensive Care Units/standards , Machine Learning/standards , Aged , Algorithms , Humans , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...