Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1363849, 2024.
Article in English | MEDLINE | ID: mdl-38572415

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.

2.
Ecotoxicol Environ Saf ; 272: 116070, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340603

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a neurotoxic widespread organic contaminant which affects several brain functions including memory, motor coordination and social activity. PFOS has the ability to traverse the placenta and the blood brain barrier (BBB) and cause weight gain in female mice. It's also known that obesity and consumption of a high fat diet have negative effects on the brain, impairs cognition and increases the risk for the development of dementia. The combination effect of developmental exposure to PFOS and the intake of a high-fat diet (HFD) has not been explored. This study investigates the effect of PFOS and /or HFD on weight gain, behavior and transcriptomic and proteomic analysis of adult brain mice. We found that female mice exposed to PFOS alone showed an increase in weight, while HFD expectedly increased body weight. The combination of HFD and PFOS exacerbated generalized behavior such as time spent in the center and rearing, while PFOS alone impacted the distance travelled. These results suggest that PFOS exposure may promote hyperactivity. The combination of PFOS and HFD alter social behavior such as rearing and withdrawal. Although HFD interfered with memory retrieval, biomarkers of dementia did not change except for total Tau and phosphorylated Tau. Tau was impacted by either or both PFOS exposure and HFD. Consistent with behavioral observations, global cerebral transcriptomic analysis showed that PFOS exposure affects calcium signaling, MAPK pathways, ion transmembrane transport, and developmental processes. The combination of HFD with PFOS enhances the effect of PFOS in the brain and affects pathways related to ER stress, axon guidance and extension, and neural migration. Proteomic analysis showed that HFD enhances the impact of PFOS on inflammatory pathways, regulation of cell migration and proliferation, and MAPK signaling pathways. Overall, these data show that PFOS combined with HFD may reprogram the genome and modulate neuromotor development and may promote symptoms linked to attention deficit-hyperactivity disorders (ADHD) and autism spectrum disorders (ASD). Future work will be needed to confirm these connections.


Subject(s)
Alkanesulfonic Acids , Dementia , Fluorocarbons , Neurodevelopmental Disorders , Pregnancy , Mice , Animals , Female , Diet, High-Fat/adverse effects , Proteomics , Weight Gain , Mice, Inbred C57BL
3.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894896

ABSTRACT

The field of Alzheimer's disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition. Using TA as a scaffold and the zinc finger domain of SP1 as a pharmacophore, we developed safer and more potent brain-penetrating analogs that interfere with sequence-specific DNA binding at transcription start sites and predominantly modulate the expression of SP1 target genes. More importantly, the proteome of treated cells displayed ~75% of the downregulated products as SP1 targets. Specific levels of SP1-driven genes and AD biomarkers such as amyloid precursor protein (APP) and Tau proteins were also decreased as part of this targeted systemic response. These small molecules, therefore, offer a viable alternative to achieving desired therapeutic outcomes by interfering with both amyloid and Tau pathways with limited off-target systemic changes.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mice, Transgenic , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/therapeutic use , tau Proteins/genetics , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism
4.
Biomedicines ; 10(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892690

ABSTRACT

Parkinson's disease (PD) is a complex multifactorial disorder that is not yet fully surmised, and it is only when such a disease is tackled on multiple levels simultaneously that we should expect to see fruitful results. Gene therapy is a modern medical practice that theoretically and, so far, practically, has demonstrated its capability in joining the battle against PD and other complex disorders on most if not all fronts. This review discusses how gene therapy can efficiently replace current forms of therapy such as drugs, personalized medicine or invasive surgery. Furthermore, we discuss the importance of enhancing delivery techniques to increase the level of transduction and control of gene expression or tissue specificity. Importantly, the results of current trials establish the safety, efficacy and applicability of gene therapy for PD. Gene therapy's variety of potential in interfering with PD's pathology by improving basal ganglial circuitry, enhancing dopamine synthesis, delivering neuroprotection or preventing neurodegeneration may one day achieve symptomatic benefit, disease modification and eradication.

5.
Biomater Sci ; 10(17): 4959-4977, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35880637

ABSTRACT

The aging population contributes to an increase in the prevalence of neurodegenerative diseases, such as Parkinson's disease (PD). Due to the progressive nature of these diseases and an incomplete understanding of their pathophysiology, current drugs are inefficient, with a limited efficacy and major side effects. In this study, CRISPR-Cas9 RNA-proteins (RNP) composed of a Cas9 nuclease and single-guide RNA were delivered with a non-viral targeted delivery system to rescue the PD-associated phenotype in neuronal cells. Here, we fused the cell-penetrating amphipathic peptide, PepFect14 (PF14), with a short fragment of the rabies virus glycoprotein (C2) previously shown to have an affinity towards nicotinic acetylcholine receptors expressed on neuronal cells and on the blood-brain barrier. The resultant peptide, C2-PF14, was used to complex with and deliver RNPs to neuronal cells. We observed that RNP/C2-PF14 complexes formed nanosized, monodispersed, and nontoxic nanoparticles that led to a specific delivery into neuronal cells. α-Synuclein (α-syn) plays a major role in the pathology of PD and is considered to be a target for therapy. We demonstrated that CRISPR/Cas9 RNP delivered by C2-PF14 achieved α-syn gene (SNCA) editing in neuronal cells as determined by T7EI assay and western blotting. Furthermore, RNP/C2-PF14 relieved PD-associated toxicity in neuronal cells in vitro. This is a proof-of-concept towards simple and safe targeted genome-editing for treating PD and other neurological disorders.


Subject(s)
CRISPR-Associated Protein 9 , Parkinson Disease , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Humans , Parkinson Disease/genetics , Parkinson Disease/therapy , Peptides/genetics , RNA
6.
Front Genome Ed ; 4: 854866, 2022.
Article in English | MEDLINE | ID: mdl-35386234

ABSTRACT

The nuclease activity of the CRISPR-Cas9 system relies on the delivery of a CRISPR-associated protein 9 (Cas9) and a single guide RNA (sgRNA) against the target gene. CRISPR components are typically delivered to cells as either a Cas9/sgRNA ribonucleoprotein (RNP) complex or a plasmid encoding a Cas9 protein along with a sequence-specific sgRNA. Multiple transfection reagents are known to deliver CRISPR-Cas9 components, and delivery vectors are being developed for different purposes by several groups. Here, we repurposed a dual-fluorescence (RFP-GFP-GFP) reporter system to quantify the uptake level of the functional CRISPR-Cas9 components into cells and compare the efficiency of CRISPR delivery vectors. Using this system, we developed a novel and rapid cell-based microplate reader assay that makes possible real-time, rapid, and high throughput quantification of CRISPR nuclease activity. Cells stably expressing this dual-fluorescent reporter construct facilitated a direct quantification of the level of the internalized and functional CRISPR-Cas9 molecules into the cells without the need of co-transfecting fluorescently labeled reporter molecules. Additionally, targeting a reporter gene integrated into the genome recapitulates endogenous gene targeting. Thus, this reporter could be used to optimize various transfection conditions of CRISPR components, to evaluate and compare the efficiency of transfection agents, and to enrich cells containing desired CRISPR-induced mutations.

7.
AAPS PharmSciTech ; 22(7): 232, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34468866

ABSTRACT

Cyclodextrin (CD) complexes are frequently used for enhancing the solubility or absorption of poorly water-soluble drugs. On the contrary, little is known about their complex formation with water-soluble drugs. Here, we have studied the interaction between 2-hydroxypropyl ß-CD (HPßCD) and three water-soluble drugs, namely naloxone (NX), oxycodone (OC), and tramadol (TR), by isothermal titration calorimetry (ITC) combined with molecular modeling in view of the potential impact on drug release. The results showed that the complex formation of HPßCD with all three drugs occurs spontaneously. The complexes formed with NX and OC were found to be 2NX:1HPßCD and 3OC:2HPßCD, respectively. TR was found to form 2 complexes with HPßCD; of 1:2 and 1:1 complexation ratios. The binding of HPßCD to NX was greater than to OC due to the higher hydrophobicity of the structure of the former. Moreover, the binding affinity of HPßCD to TR was higher than to OC, which indicated the effect of the higher flexibility of the guest in increasing the binding affinity. In vitro drug release experiments from the various complexes revealed a significant impact of the stoichiometry of the complex on the release profiles. Accordingly, the co-administration of cyclodextrins with water-soluble drugs should be closely monitored, as it may result in unintentional complex formation that can potentially impact the drugs' gastrointestinal absorption.


Subject(s)
Cyclodextrins , Pharmaceutical Preparations , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Calorimetry , Solubility , Water
8.
Adv Drug Deliv Rev ; 175: 113828, 2021 08.
Article in English | MEDLINE | ID: mdl-34157320

ABSTRACT

Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.


Subject(s)
Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa/drug effects , Animals , Cells, Cultured/drug effects , Drug Delivery Systems , Humans , Molecular Targeted Therapy/methods , Organoids/drug effects , Organoids/pathology , Tissue Scaffolds
9.
MAbs ; 13(1): 1933690, 2021.
Article in English | MEDLINE | ID: mdl-34190031

ABSTRACT

In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered "double-DATEs" targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Neoplasm/immunology , Antineoplastic Agents/pharmacology , Immunotherapy/methods , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , CD3 Complex/immunology , Carcinoma, Pancreatic Ductal/immunology , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Pancreatic Neoplasms/immunology , Xenograft Model Antitumor Assays
10.
Int J Mol Sci ; 21(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027946

ABSTRACT

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems, focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR components to different cell types for therapeutic and research purposes.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy/trends , Genetic Vectors/genetics , Genetic Vectors/therapeutic use , Humans
11.
J Allergy Clin Immunol ; 142(4): 1229-1242.e6, 2018 10.
Article in English | MEDLINE | ID: mdl-29154958

ABSTRACT

BACKGROUND: Mechanisms that elicit mucosal TH17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. OBJECTIVE: We sought to understand whether maintenance of lung TH17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of TH17 cells. METHODS: Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory TH17 cells, generated in culture with CD4+ T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. TH17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. RESULTS: TH17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c+ cells. CD103+ and CD11b+ conventional dendritic cells interacted directly with TH17 cells in situ and revived the clonal expansion of TH17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. CONCLUSION: TH17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells.


Subject(s)
Dendritic Cells/immunology , Inflammation/immunology , Lung/immunology , Th17 Cells/immunology , Toll-Like Receptor 4/immunology , Allergens/immunology , Animals , Aspergillus oryzae/immunology , Dust , Endotoxins/immunology , Mice, Inbred C57BL , Mice, Transgenic , Ovalbumin/immunology , Toll-Like Receptor 4/genetics
12.
J Clin Invest ; 127(9): 3313-3326, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28758900

ABSTRACT

Asthma is associated with exposure to a wide variety of allergens and adjuvants. The extent to which overlap exists between the cellular and molecular mechanisms triggered by these various agents is poorly understood, but it might explain the differential responsiveness of patients to specific therapies. In particular, it is unclear why some, but not all, patients benefit from blockade of TNF. Here, we characterized signaling pathways triggered by distinct types of adjuvants during allergic sensitization. Mice sensitized to an innocuous protein using TLR ligands or house dust extracts as adjuvants developed mixed eosinophilic and neutrophilic airway inflammation and airway hyperresponsiveness (AHR) following allergen challenge, whereas mice sensitized using proteases as adjuvants developed predominantly eosinophilic inflammation and AHR. TLR ligands, but not proteases, induced TNF during allergic sensitization. TNF signaled through airway epithelial cells to reprogram them and promote Th2, but not Th17, development in lymph nodes. TNF was also required during the allergen challenge phase for neutrophilic and eosinophilic inflammation. In contrast, TNF was dispensable for allergic airway disease in a protease-mediated model of asthma. These findings might help to explain why TNF blockade improves lung function in only some patients with asthma.


Subject(s)
Hypersensitivity/metabolism , Inflammation/physiopathology , Respiratory Hypersensitivity/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/physiology , Allergens , Animals , Asthma/metabolism , Asthma/physiopathology , Bronchial Hyperreactivity/physiopathology , Cell Differentiation , Cytokines/metabolism , Disease Models, Animal , Eosinophils/cytology , Hypersensitivity/physiopathology , Interleukin-17/metabolism , Ligands , Lung/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Ovalbumin/metabolism , Respiratory Hypersensitivity/physiopathology , Signal Transduction , Th17 Cells/cytology , Th2 Cells/cytology
13.
Immunology ; 152(1): 138-149, 2017 09.
Article in English | MEDLINE | ID: mdl-28502093

ABSTRACT

The Toll-like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin-1 receptor and resistance protein (TIR) domain-containing adaptor inducing interferon-ß (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4-dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild-type (WT), Trif-/- or Myd88-/- mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF-dependent and MyD88-independent. TRIF deficiency diminished the CD4+ ICOS+ T-cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3- cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin-induced CD4+ ICOS+ cells in the TRIF-dependent inhibition of airway hyper-responsiveness. Hence, our data demonstrate that stimulation of the TLR4-TRIF pathway can protect against the development of allergic airway disease and that a TRIF-dependent adjuvant effect on CD4+ ICOS+ T-cell responses may be a contributing mechanism.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Asthma/prevention & control , CD4-Positive T-Lymphocytes/metabolism , Lung/metabolism , Rhinitis, Allergic, Seasonal/prevention & control , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Adoptive Transfer , Animals , Antigens, Plant/immunology , Asthma/immunology , Asthma/metabolism , Asthma/physiopathology , Betula/immunology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/prevention & control , Bronchoconstriction , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , Cell Proliferation , Chemotaxis, Leukocyte , Cysteine Endopeptidases/immunology , Disease Models, Animal , Drug Combinations , Female , Genetic Predisposition to Disease , Inducible T-Cell Co-Stimulator Protein/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Lipopolysaccharides/immunology , Lung/immunology , Lung/physiopathology , Lymphocyte Activation , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phenotype , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Rhinitis, Allergic, Seasonal/metabolism , Rhinitis, Allergic, Seasonal/physiopathology , Signal Transduction , Time Factors , Toll-Like Receptor 4/immunology
14.
Pharm Res ; 33(8): 2010-24, 2016 08.
Article in English | MEDLINE | ID: mdl-27177721

ABSTRACT

PURPOSE: Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections. METHODS: Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles. Cytotoxicity was performed using a sulforhodamine B method on MCF-7 cells, while biocompatibility was determined on rats followed by hematological and histopathological investigations. RESULTS: Formulae with the smallest particle sizes and adequate entrapment efficiency revealed that NOS loaded nanoparticles showed higher extent of release at pH 4.5. Colloidal stability suggested that nanoparticles would be stable in blood when injected into the systemic circulation. Loaded nanoparticles had IC50 values lower than free drug. Hematological and histopathological studies showed no difference between treated and control groups. Pharmacokinetic analysis revealed that formulation P1 had a prolonged half-life and better bioavailability compared to drug solution. CONCLUSIONS: Formulation of NOS into biodegradable polymeric nanoparticles has increased its efficacy and residence on cancer cells while passively avoiding normal body tissues. Graphical Abstract ᅟ.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/administration & dosage , Particle Size , Polyesters/administration & dosage , Polyethylene Glycols/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Nanoparticles/chemistry , Noscapine/administration & dosage , Noscapine/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Rats , Rats, Wistar
15.
Respir Physiol Neurobiol ; 218: 11-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26213118

ABSTRACT

The effect of remodeling on airway function is uncertain. It may affect airway compressibility during forced expirations differently than airflow resistance, providing a tool for its assessment. The aim of the current study was to compare the effects of acute and chronic antigen challenge on methacholine-induced bronchoconstriction assessed from resistance and maximal tidal expiratory flow. Balb/C mice were sensitized with ovalbumin (OVA) and challenged either daily for three days with intra-nasal OVA or daily for 5 days and three times a week for 5 subsequent weeks. Acute and chronic allergen challenge induced airway hyperresponsiveness (AHR) to methacholine. However the relationship between maximal tidal expiratory flow and resistance during methacholine challenge was different between the two conditions, suggesting that the determinants of AHR are not identical following acute and chronic allergen exposure. We conclude that the contrast of changes in maximal tidal expiratory flow and respiratory resistance during methacholine-induced bronchoconstriction may allow the detection of the mechanical consequences of airway remodeling.


Subject(s)
Airway Remodeling/physiology , Airway Resistance/physiology , Respiratory Hypersensitivity/physiopathology , Acute Disease , Airway Remodeling/drug effects , Airway Resistance/drug effects , Animals , Bronchoconstrictor Agents/pharmacology , Chronic Disease , Disease Models, Animal , Elasticity , Female , Goblet Cells/pathology , Methacholine Chloride/pharmacology , Mice, Inbred BALB C , Muscle, Smooth, Vascular/pathology , Ovalbumin , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology , Random Allocation , Respiratory Hypersensitivity/pathology , Tidal Volume/drug effects , Tidal Volume/physiology
16.
Int J Nanomedicine ; 9: 4953-64, 2014.
Article in English | MEDLINE | ID: mdl-25364252

ABSTRACT

In this study, di- and triblock copolymers based on polyethylene glycol and polylactide were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance and gel permeation chromatography. Nanoparticles containing noscapine were prepared from these biodegradable and biocompatible copolymers using the nanoprecipitation method. The prepared nanoparticles were characterized for size and drug entrapment efficiency, and their morphology and size were checked by transmission electron microscopy imaging. Artificial neural networks were constructed and tested for their ability to predict particle size and entrapment efficiency of noscapine within the formed nanoparticles using different factors utilized in the preparation step, namely polymer molecular weight, ratio of polymer to drug, and number of blocks that make up the polymer. Using these networks, it was found that the polymer molecular weight has the greatest effect on particle size. On the other hand, polymer to drug ratio was found to be the most influential factor on drug entrapment efficiency. This study demonstrated the ability of artificial neural networks to predict not only the particle size of the formed nanoparticles but also the drug entrapment efficiency. This may have a great impact on the design of polyethylene glycol and polylactide-based copolymers, and can be used to customize the required target formulations.


Subject(s)
Chemistry, Pharmaceutical/methods , Nanoparticles/chemistry , Nanotechnology/methods , Noscapine/chemistry , Particle Size , Polyethylene Glycols/chemistry , Neural Networks, Computer
17.
PLoS One ; 9(6): e98648, 2014.
Article in English | MEDLINE | ID: mdl-24968337

ABSTRACT

Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1ß, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA.


Subject(s)
Asthma/etiology , Lipopolysaccharides/toxicity , Ovalbumin/toxicity , Respiratory Hypersensitivity/etiology , Animals , Asthma/immunology , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Drug Synergism , Eosinophils/immunology , Humans , Inflammation/etiology , Inflammation/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukins/genetics , Interleukins/metabolism , Lipopolysaccharides/immunology , Male , Mice , Mice, Inbred BALB C , Neutrophils/immunology , Ovalbumin/immunology , Respiratory Hypersensitivity/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Proc Natl Acad Sci U S A ; 111(20): E2110-9, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24799673

ABSTRACT

To subvert host immunity, influenza A virus (IAV) induces early apoptosis in innate immune cells by disrupting mitochondria membrane potential via its polymerase basic protein 1-frame 2 (PB1-F2) accessory protein. Whether immune cells have mechanisms to counteract PB1-F2-mediated apoptosis is currently unknown. Herein, we define that the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 binds to viral protein PB1-F2, preventing IAV-induced macrophage apoptosis and promoting both macrophage survival and type I IFN signaling. We initially observed that Nlrx1-deficient mice infected with IAV exhibited increased pulmonary viral replication, as well as enhanced inflammatory-associated pulmonary dysfunction and morbidity. Analysis of the lungs of IAV-infected mice revealed markedly enhanced leukocyte recruitment but impaired production of type I IFN in Nlrx1(-/-) mice. Impaired type I IFN production and enhanced viral replication was recapitulated in Nlrx1(-/-) macrophages and was associated with increased mitochondrial mediated apoptosis. Through gain- and loss-of-function strategies for protein interaction, we identified that NLRX1 directly bound PB1-F2 in the mitochondria of macrophages. Using a recombinant virus lacking PB1-F2, we confirmed that deletion of PB1-F2 abrogated NLRX1-dependent macrophage type I IFN production and apoptosis. Thus, our results demonstrate that NLRX1 acts as a mitochondrial sentinel protecting macrophages from PB1-F2-induced apoptosis and preserving their antiviral function. We further propose that NLRX1 is critical for macrophage immunity against IAV infection by sensing the extent of viral replication and maintaining a protective balance between antiviral immunity and excessive inflammation within the lungs.


Subject(s)
Apoptosis , Influenza A virus/immunology , Macrophages/immunology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Viral Proteins/metabolism , Animals , Cell Line, Tumor , Humans , Inflammation , Influenza A virus/physiology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondrial Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Virus Replication
19.
J Immunol ; 191(2): 922-33, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23776177

ABSTRACT

Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-ß (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , NADPH Oxidases/metabolism , Oxidative Stress , Pollen/immunology , Toll-Like Receptor 4/metabolism , Acetylcysteine/pharmacology , Animals , Asthma/immunology , Betula/immunology , Female , Interferon-beta/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Reactive Oxygen Species/metabolism , Th2 Cells/immunology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Toll-Like Receptor 4/genetics
20.
J Immunol ; 189(6): 2793-804, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22908333

ABSTRACT

Modulation of adaptive immune responses via the innate immune pattern recognition receptors, such as the TLRs, is an emerging strategy for vaccine development. We investigated whether nasal rather than intrapulmonary application of Protollin, a mucosal adjuvant composed of TLR2 and TLR4 ligands, is sufficient to elicit protection against murine allergic lower airway disease. Wild-type, Tlr2(-/-), or Tlr4(-/-) BALB/c mice were sensitized to a birch pollen allergen extract (BPEx), then received either intranasal or intrapulmonary administrations of Protollin or Protollin admixed with BPEx, followed by consecutive daily BPEx challenges. Nasal application of Protollin or Protollin admixed with BPEx was sufficient to inhibit allergic lower airway disease with minimal collateral lung inflammation. Inhibition was dependent on TLR4 and was associated with the induction of ICOS in cells of the nasal mucosa and on both CD4+Foxp3+ and CD4+Foxp3- T cells of the draining lymph nodes (LNs), as well as their recruitment to the lungs. Adoptive transfer of cervical LN CD4+ICOS+, but not CD4+ICOS-, cells inhibited BPEx-induced airway hyperresponsiveness and bronchoalveolar lavage eosinophilia. Thus, our data indicate that expansion of resident ICOS-expressing CD4+ T cells of the cervical LNs by nasal mucosal TLR4 stimulation may inhibit the development of allergic lower airway disease in mice.


Subject(s)
Asthma/prevention & control , CD4-Positive T-Lymphocytes/immunology , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Lymphocyte Activation/immunology , Nasal Mucosa/immunology , Toll-Like Receptor 4/physiology , Animals , Asthma/drug therapy , Asthma/immunology , Betula/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Female , Mice , Mice, Inbred BALB C , Mice, Knockout , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Pollen/immunology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/prevention & control , Toll-Like Receptor 4/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL