Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 130: 107328, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31306879

ABSTRACT

Blood vessels, the extracellular space, and the cell membrane represent physiologic barriers to nanoparticle-based drug delivery for cancer therapy. We demonstrate that electroporation (EP) can assist in the delivery of dye stabilized sorafenib nanoparticles (SFB-IR783) by increasing the permeability of endothelial monolayers, improving diffusion through the extracellular space in tumorspheres, and by disrupting plasma membrane function in cancer cells. These changes occur in a dose-dependent fashion, increasing proportionally with electric field strength. Cell death from irreversible electroporation (IRE) was observed to contribute to the persistent transport of SFB-IR783 through these physiologic barriers. In a model of mice bearing bilateral xenograft HCT116 colorectal tumors, treatment with EP resulted in the immediate and increased uptake of SFB-IR783 when compared with the untreated contralateral tumor. The uptake of SFB-IR783 was independent of direct transfection of cells through EP and was mediated by changes in vascular permeability and extracellular diffusion. The combination of EP and SFB-IR783 was observed to result in 40% reduction in mean tumor diameter when compared with sham treatment (p < .05) at the time of sacrifice, which was not observed in cohorts treated with EP alone or SFB-IR783 alone. Treatment of tumor with EP can augment the uptake and increase the efficacy of nanoparticle therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/drug therapy , Sorafenib/administration & dosage , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Electroporation/methods , Female , HCT116 Cells , Humans , Mice , Mice, Nude , Nanoparticles/administration & dosage , Sorafenib/pharmacokinetics , Sorafenib/therapeutic use , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...