Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Clinics (Sao Paulo) ; 78: 100200, 2023.
Article in English | MEDLINE | ID: mdl-37120984

ABSTRACT

OBJECTIVES: Remdesivir is an antiviral agent with positive effects on the prognosis of Coronavirus Disease (COVID-19). However, there are concerns about the detrimental effects of remdesivir on kidney function which might consequently lead to Acute Kidney Injury (AKI). In this study, we aim to determine whether remdesivir use in COVID-19 patients increases the risk of AKI. METHODS: PubMed, Scopus, Web of Science, the Cochrane Central Register of Controlled Trials, medRxiv, and bioRxiv were systematically searched until July 2022, to find Randomized Clinical Trials (RCT) that evaluated remdesivir for its effect on COVID-19 and provided information on AKI events. A random-effects model meta-analysis was conducted and the certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation. The primary outcomes were AKI as a Serious Adverse Event (SAE) and combined serious and non-serious Adverse Events (AE) due to AKI. RESULTS: This study included 5 RCTs involving 3095 patients. Remdesivir treatment was not associated with a significant change in the risk of AKI classified as SAE (Risk Ratio [RR]: 0.71, 95% Confidence Interval [95% CI] 0.43‒1.18, p = 0.19, low-certainty evidence) and AKI classified as any grade AEs (RR = 0.83, 95% CI 0.52‒1.33, p = 0.44, low-certainty evidence), compared to the control group. CONCLUSION: Our study suggested that remdesivir treatment probably has little or no effect on the risk of AKI in COVID-19 patients.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , COVID-19 Drug Treatment , Randomized Controlled Trials as Topic
2.
Clinics ; 78: 100200, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439927

ABSTRACT

Abstract Objectives: Remdesivir is an antiviral agent with positive effects on the prognosis of Coronavirus Disease (COVID-19). However, there are concerns about the detrimental effects of remdesivir on kidney function which might consequently lead to Acute Kidney Injury (AKI). In this study, we aim to determine whether remdesivir use in COVID-19 patients increases the risk of AKI. Methods: PubMed, Scopus, Web of Science, the Cochrane Central Register of Controlled Trials, medRxiv, and bio-Rxiv were systematically searched until July 2022, to find Randomized Clinical Trials (RCT) that evaluated remdesivir for its effect on COVID-19 and provided information on AKI events. A random-effects model metaanalysis was conducted and the certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation. The primary outcomes were AKI as a Serious Adverse Event (SAE) and combined serious and non-serious Adverse Events (AE) due to AKI. Results: This study included 5 RCTs involving 3095 patients. Remdesivir treatment was not associated with a significant change in the risk of AKI classified as SAE (Risk Ratio [RR]: 0.71, 95% Confidence Interval [95% CI] 0.43‒1.18, p = 0.19, low-certainty evidence) and AKI classified as any grade AEs (RR = 0.83, 95% CI 0.52‒1.33, p = 0.44, low-certainty evidence), compared to the control group. Conclusion: Our study suggested that remdesivir treatment probably has little or no effect on the risk of AKI in COVID-19 patients.

3.
Int J Pharm ; 586: 119603, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32629071

ABSTRACT

Cellular senescence is one of the hallmarks of aging. Since senescence of dermal fibroblasts has been reported in vivo, reduction of the deleterious effects of these cells, has been considered an important intervention to counteract skin aging. Promising anti-aging effect of metformin has been reported. However, permeation of metformin due to its high hydrophilicity through skin epidermal barriers is limited. In this study, solid lipid nanoparticles (SLNs) of metformin were designed with the newly synthesized cholesterol-lysine conjugate as lipid for topical delivery of metformin. Characterization of SLNs strongly confirmed the effect of cholesterol-lysine conjugate on increasing entrapment of metformin. The designed SLNs with particle size of 283 nm and spherical morphology represented controlled drug release up to 18 days. Fluorescent tracking of SLNs on mice skin samples showed an increase in epidermal penetration. SLNs containing metformin showed anti-senescence effects on UVB-induced senescence of human dermal fibroblasts, this effect was confirmed by senescence-associated ß-galactosidase staining, RT q-PCR and cell cycle analyses. Furthermore, our drug-free SLNs showed anti-senescence effects, suggesting that they can be a suitable carrier for phytochemicals with anti-aging effect or other hydrophilic compounds which have constraints permeating skin.


Subject(s)
Metformin , Nanoparticles , Animals , Cholesterol , Drug Carriers , Lysine , Mice , Particle Size , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...