Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38388738

ABSTRACT

PURPOSE: The detection rate of Salmonella enterica serovar 1,4,[5], 12: i: - (S. 1,4,[5], 12: i: -) has increased as the most common serotype globally. A S. 1,4,[5], 12: i: - strain named ST3606 (sequence type 34), isolated from a fecal specimen of a child with acute diarrhea hospitalized in a tertiary hospital in China, was firstly reported to be resistant to carbapenem and ceftazidime-avibactam. The aim of this study was to characterize the whole-genome sequence of S. 1,4,[5], 12: i: - isolate, ST3606, and explore its antibiotic resistance genes and their genetic environments. METHODS: The genomic DNA of S. 1,4,[5], 12: i: - ST3606 was extracted and performed with single-molecule real-time sequencing. Resistance genes, plasmid replicon type, mobile elements, and multilocus sequence types (STs) of ST3606 were identified by ResFinder 3.2, PlasmidFinder, OriTfinder database, ISfinder database, and MLST 2.0, respectively. The conjugation experiment was utilized to evaluate the conjugation frequency of pST3606-2. Protein expression and enzyme kinetics experiments of CTX-M were performed to analyze hydrolytic activity of a novel CTX-M-261 enzyme toward several antibiotics. RESULTS: Single-molecule real-time sequencing revealed the coexistence of a 109-kb IncI1-Iα plasmid pST3606-1 and a 70.5-kb IncFII plasmid pST3606-2. The isolate carried resistance genes, including blaNDM-5, sul1, qacE, aadA2, and dfrA12 in pST3606-1, blaTEM-1B, aac(3)-lld, and blaCTX-M-261, a novel blaCTX-M-1 family member, in pST3606-2, and aac(6')-Iaa in chromosome. The blaCTX-M-261 was derived from blaCTX-M-55 by a single-nucleotide mutation 751G>A leading to amino acid substitution of Val for Met at position 251 (Val251Met), which conferred CTX-M increasing resistance to ceftazidime verified by antibiotics susceptibility testing of transconjugants carrying pST3606-2 and steady-state kinetic parameters of CTX-M-261. pST3606-1 is an IncI1-α incompatibility type that shares homology with plasmids of pC-F-164_A-OXA140, pE-T654-NDM-5, p_dm760b_NDM-5, and p_dmcr749c_NDM-5. The conjugation experiment demonstrated that pST3606-2 was successfully transferred to the Escherichia coli recipient C600 with four modules of OriTfinder. CONCLUSION: Plasmid-mediated horizontal transfer plays an important role in blaNDM-5 and blaCTX-M-261 dissemination, which increases the threat to public health due to the resistance to most ß-lactam antibiotics. This is the first report of blaCTX-M-261 and blaNDM-5 in S. 1,4,[5], 12: i: -. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of CTX-M enzymes and confirms urgency to control resistance of S. 1,4,[5], 12: i: -.

2.
J Cancer ; 12(17): 5173-5180, 2021.
Article in English | MEDLINE | ID: mdl-34335934

ABSTRACT

Liver cancer, the second most commonly diagnosed cancer, is associated with high mortality rates. E2F4 is a member of the E2F transcription factor family. There are limited studies on the role of E2F4 in hepatocellular carcinoma (HCC). In this study, the expression of E2F4 in HCC tissue samples and cell lines was analyzed using quantitative real-time polymerase chain reaction. E2F4 expression positively correlated with tumor size in patients with HCC. Additionally, E2F4 expression was greater in HCC cells than in normal LO2 cells. Furthermore, overexpression of E2F4 significantly enhanced the proliferation, migration, and invasion of HCC cells. The results of a luciferase assay revealed that E2F4 upregulated the expression of CDCA3 by binding to its promoter region (1863'-ACGCGCGAGAATG-1875') and consequently promoted proliferation and cell cycle progression of HCC cells. Taken together, these results demonstrated that E2F4 might play a vital role in HCC progression and could serve as a potential biomarker for the diagnosis and as a therapeutic target of HCC.

3.
Infect Drug Resist ; 13: 3563-3568, 2020.
Article in English | MEDLINE | ID: mdl-33116675

ABSTRACT

PURPOSE: To assess the antimicrobial activities of ceftazidime/avibactam (CAZ/AVI) and aztreonam/avibactam (ATM/AVI) against carbapenem-resistant Enterobacteriaceae (CRE) isolates collected from three secondary hospitals in Southwest China between 2018 and 2019. MATERIALS AND METHODS: A total of 120 unique CRE clinical isolates were collected and carbapenemase genes were detected using PCR. Antimicrobial susceptibility was determined using standard broth microdilution method and the results were interpreted according to CLSI breakpoints. RESULTS: The 120 carbapenem-resistant strains included 92 Klebsiella pneumoniae, 10 Escherichia coli, 10 Enterobacter cloacae, five Klebsiella aerogenes, and three Klebsiella oxytoca isolates. Seventy-four percent of these 120 CRE isolates were collected from patients located in non-ICUs; 65.0% of these CRE isolates were collected from male patients; and 34.2% of these isolates were isolated from respiratory tracts. Four different carbapenemase genes were identified among 103 carbapenemase-producing Enterobacteriaceae (CPE) isolates, including bla KPC-2 (n=77), bla NDM-1 (n=16), bla NDM-5 (n=12) and bla IMP-4 (n=2). Overall, 21.7%, 37.5%, 40.8%, 75.0%, and 100% of the CRE strains were susceptible to levofloxacin, trimethoprim/sulfamethoxazole, amikacin, CAZ/AVI, and ATM/AVI, respectively. In addition, antimicrobial susceptibility testing showed that 96.7% isolates (n=116) were resistant to aztreonam, and the addition of avibactam (4 mg/L) significantly reduced the MICs of those aztreonam-resistant isolates by more than 128-fold (range: ≤0.125-4 mg/L), and 90.0% (n=108) of total 120 isolates were inhibited at ATM/AVI concentration ≤1 mg/L. CONCLUSION: Our study revealed significant antimicrobial resistance among the CRE isolates against some commonly used antibiotics in three secondary Chinese hospitals. ATM/AVI exhibited potent activity against CRE isolates, including double carbapenemase-producing isolates, whereas CAZ/AVI was active against all KPC producers.

SELECTION OF CITATIONS
SEARCH DETAIL
...