Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 820, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510141

ABSTRACT

BACKGROUND: BBX genes are key players in the regulation of various developmental processes and stress responses, which have been identified and functionally characterized in many plant species. However, our understanding of BBX family was greatly limited in soybean. RESULTS: In this study, 59 BBX genes were identified and characterized in soybean, which can be phylogenetically classified into 5 groups. GmBBXs showed diverse gene structures and motif compositions among the groups and similar within each group. Noticeably, synteny analysis suggested that segmental duplication contributed to the expansion of GmBBX family. Moreover, our RNA-Seq data indicated that 59 GmBBXs showed different transcript profiling under salt stress, and qRT-PCR analysis confirmed their expression patterns. Among them, 22 GmBBXs were transcriptionally altered with more than two-fold changes by salt stress, supporting that GmBBXs play important roles in soybean tolerance to salt stress. Additionally, Computational assay suggested that GmBBXs might potentially interact with GmGI3, GmTOE1b, GmCOP1, GmCHI and GmCRY, while eight types of transcription factors showed potentials to bind the promoter regions of GmBBX genes. CONCLUSIONS: Fifty-nine BBX genes were identified and characterized in soybean, and their expression patterns under salt stress and computational assays suggested their functional roles in response to salt stress. These findings will contribute to future research in regard to functions and regulatory mechanisms of soybean BBX genes in response to salt stress.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Salt Stress/genetics , Phylogeny , Stress, Physiological/genetics
2.
Front Plant Sci ; 12: 764074, 2021.
Article in English | MEDLINE | ID: mdl-35003158

ABSTRACT

REVEILLE (RVE) genes generally act as core circadian oscillators to regulate multiple developmental events and stress responses in plants. It is of importance to document their roles in crops for utilizing them to improve agronomic traits. Soybean is one of the most important crops worldwide. However, the knowledge regarding the functional roles of RVEs is extremely limited in soybean. In this study, the soybean gene GmMYB133 was shown to be homologous to the RVE8 clade genes of Arabidopsis. GmMYB133 displayed a non-rhythmical but salt-inducible expression pattern. Like AtRVE8, overexpression of GmMYB133 in Arabidopsis led to developmental defects such as short hypocotyl and late flowering. Seven light-responsive or auxin-associated genes including AtPIF4 were transcriptionally depressed by GmMYB133, suggesting that GmMYB133 might negatively regulate plant growth. Noticeably, the overexpression of GmMYB133 in Arabidopsis promoted seed germination and plant growth under salt stress, and the contents of chlorophylls and malondialdehyde (MDA) were also enhanced and decreased, respectively. Consistently, the expressions of four positive regulators responsive to salt tolerance were remarkably elevated by GmMYB133 overexpression, indicating that GmMYB133 might confer salt stress tolerance. Further observation showed that GmMYB133 overexpression perturbed the clock rhythm of AtPRR5, and yeast one-hybrid assay indicated that GmMYB133 could bind to the AtPRR5 promoter. Moreover, the retrieved ChIP-Seq data showed that AtPRR5 could directly target five clients including AtPIF4. Thus, a regulatory module GmMYB133-PRR5-PIF4 was proposed to regulate plant growth and salt stress tolerance. These findings laid a foundation to further address the functional roles of GmMYB133 and its regulatory mechanisms in soybean.

3.
Gene ; 753: 144803, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32446917

ABSTRACT

R2R3-type MYBs are a key group of regulatory factors that control diverse developmental processes and stress tolerance in plants. Soybean is a major legume crop with the richness of seed protein and edible vegetable oil, and 244 R2R3-type MYBs have been identified in soybean. However, the knowledge regarding their functional roles has been greatly limited as yet. In this study, a novel R2R3-type MYB (GmMYB81) was functionally characterized in soybean, and it is closely related to two abiotic stress-associated regulators (AtMYB44 and AtMYB77). GmMYB81 transcripts not only differentially accumulated in soybean tissues and during embryo development, but also were significantly enhanced by drought, salt and cold stress. Histochemical GUS assay in Arabidopsis indicated that GmMYB81 promoter showed high activity in seedlings, rosette leaves, inflorescences, silique wall, mature anthers, roots, and germinating seeds. Further investigation indicated that over-expression of GmMYB81 in Arabidopsis caused auxin-associated phenotypes, including small flower and silique, more branch, and weakened apical dominance. Moreover, over-expression of GmMYB81 significantly elevated the rates of seed germination and green seedling under salt and drought stress, indicating that GmMYB81 might confer plant tolerance to salt and drought stress during seed germination. Additionally, protein interaction analysis showed that GmMYB81 interacts with the abiotic stress regulator GmSGF14l. Further observation indicated that they displayed similar expression patterns under drought and salt stress, suggesting GmMYB81 and GmSGF14l might cooperatively affect stress tolerance. These findings will facilitate future investigations of the regulatory mechanisms of GmMYB81 in response to plant stress tolerance, especially seed germination under abiotic stresses.


Subject(s)
Arabidopsis Proteins/genetics , Glycine max/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Droughts , Fabaceae/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Germination/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Salt Stress/genetics , Salt Tolerance/genetics , Seeds/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL