Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(3): 1172-1188, 2024 May.
Article in English | MEDLINE | ID: mdl-38501463

ABSTRACT

Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.


Subject(s)
Carrier Proteins , Plants , Organelles
2.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504107

ABSTRACT

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Subject(s)
Ferroptosis , Iron Overload , Neoplasms , Humans , Polyamines/metabolism , Ferroptosis/genetics , Hydrogen Peroxide , Cell Line, Tumor , Arginine , Neoplasms/genetics
3.
J Exp Clin Cancer Res ; 43(1): 63, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424624

ABSTRACT

BACKGROUND: Lung cancer is one of the most common tumors in the world, and metastasis is one of the major causes of tumor-related death in lung cancer patients. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are frequently associated with tumor metastasis in human cancers. However, the regulatory mechanisms of TAMs in lung cancer metastasis remain unclear. METHODS: Single-cell sequencing analysis of lung cancer and normal tissues from public databases and from 14 patients who underwent surgery at Zhongshan Hospital was performed. In vitro co-culture experiments were performed to evaluate the effects of TAMs on lung cancer migration and invasion. Changes in the expression of IL-6, STAT3, C/EBPΒ, and EMT pathway were verified using RT-qPCR, western blotting, and immunofluorescence. Dual luciferase reporter assays and ChIP were used to reveal potential regulatory sites on the transcription factor sets. In addition, the effects of TAMs on lung cancer progression and metastasis were confirmed by in vivo models. RESULTS: TAM infiltration is associated with tumor progression and poor prognosis. IL-6 secreted by TAMs can activate the JAK2/STAT3 pathway through autocrine secretion, and STAT3 acts as a transcription factor to activate the expression of C/EBPß, which further promotes the transcription and expression of IL-6, forming positive feedback loops for IL6-STAT3-C/EBPß-IL6 in TAMs. IL-6 secreted by TAMs promotes lung cancer progression and metastasis in vivo and in vitro by activating the EMT pathway, which can be attenuated by the use of JAK2/STAT3 pathway inhibitors or IL-6 monoclonal antibodies. CONCLUSIONS: Our data suggest that TAMs promote IL-6 expression by forming an IL6-STAT3-C/EBPß-IL6 positive feedback loop. Released IL-6 can induce the EMT pathway in lung cancer to enhance migration, invasion, and metastasis. The use of IL-6-neutralizing antibody can partially counteract the promotion of LUAD by TAMs. A novel mechanism of macrophage-promoted tumor progression was revealed, and the IL6-STAT3-C/EBPß-IL6 signaling cascade may be a potential therapeutic target against lung cancer.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Interleukin-6/metabolism , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Feedback , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Transcription Factors/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Microenvironment , Epithelial-Mesenchymal Transition
4.
Respir Res ; 24(1): 277, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957645

ABSTRACT

Ferroptosis is a type of regulated cell death characterized by iron accumulation and lipid peroxidation. The molecular mechanisms underlying ferroptosis regulation in non-small cell lung cancer (NSCLC) are poorly understood. In this study, we found that protein kinase A (PKA) inhibition enhanced ferroptosis susceptibility in NSCLC cells, as evidenced by reduced cell viability and increased lipid peroxidation. We further identified cAMP-responsive element protein 1 (CREB1), a transcription factor and a substrate of PKA, as a key regulator of ferroptosis. Knockdown of CREB1 sensitized NSCLC cells to ferroptosis inducers (FINs) and abolished the effects of PKA inhibitor and agonist, revealing the pivotal role of CREB1 in ferroptosis regulation. Using a high-throughput screening approach and subsequent validation by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, we discovered that CREB1 transcriptionally activated stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids. SCD conferred ferroptosis resistance by decreasing the availability of polyunsaturated fatty acids for lipid peroxidation, and its overexpression rescued the effect of CREB1 knockdown on ferroptosis in vitro. Besides, CREB1 knockdown suppressed xenograft tumor growth in the presence of Imidazole Ketone Erastin (IKE), a potent FIN, and this effect was reversed by SCD. Finally, we showed that high expression of CREB1 was associated with poor prognosis in NSCLC patients from public datasets and our institution. Collectively, this study illustrates the effect of PKA/CREB1/SCD axis in regulating ferroptosis of NSCLC, targeting this pathway may provide new strategies for treating NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Ferroptosis/genetics , Lipid Peroxidation , Lung Neoplasms/genetics
5.
Heliyon ; 9(8): e18132, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529341

ABSTRACT

Background: N6-methyladenosine (m6A) RNA methylation plays a crucial role in important genomic processes in a variety of malignancies. However, the characterization of m6A with infiltrating immune cells in the tumor microenvironment (TME) in esophageal squamous carcinoma (ESCC) remains unknown. Methods: The single-cell transcriptome data from five ESCC patients in our hospital were analyzed, and TME clusters associated with prognosis and immune checkpoint genes were investigated. Cell isolation and qPCR were conducted to validate the gene characterization in different cells. Results: According to distinct biological processes and marker genes, macrophages, T cells, and B cells clustered into three to four different subgroups. In addition, we demonstrated that m6A RNA methylation regulators were strongly related to the clinical and biological features of ESCC. Analysis of transcriptome data revealed that m6A-mediated TME cell subsets had high predictive value and showed a close relationship with immune checkpoint genes. The validation results from qPCR demonstrated the characteristics of essential genes. CellChat analysis revealed that RNA from TME cells m6A methylation-associated cell subtypes had substantial and diversified interactions with cancer cells. Further investigation revealed that MIF- (CD74+CXCR4) and MIF- (CD74+CD44) ligand-receptor pairings facilitated communication between m6A-associated subtypes of TME cells and cancer cells. Conclusion: Overall, our study demonstrated for the first time the function of m6A methylation-mediated intercellular communication in the microenvironment of tumors in controlling tumor development and anti-tumor immune regulation in ESCC.

6.
Pharmacol Res ; 194: 106819, 2023 08.
Article in English | MEDLINE | ID: mdl-37321467

ABSTRACT

Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.


Subject(s)
Adenocarcinoma of Lung , Agrin , Lung Neoplasms , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Retrospective Studies , Signal Transduction , Agrin/metabolism , Receptor, Notch1/metabolism
7.
Commun Biol ; 6(1): 570, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248295

ABSTRACT

Ferroptosis, an iron-dependent non-apoptotic cell death, has been shown to play a vital role in tumor proliferation and chemotherapy resistance. Here, we report that KLF11 inhibits lung adenocarcinoma (LUAD) cell proliferation and promotes chemotherapy sensitivity by participating in the GPX4-related ferroptosis pathway. Through an RNA-sequence screen from LUAD cells pretreatment with ferroptosis inducers (FINs), we discovered that KLF11 expression was significantly higher in FINs-treated cells, suggesting that KLF11 may be involved in ferroptosis. Overexpression of KLF11 promoted LUAD cells to undergo ferroptosis alterations. Meanwhile, upregulation of KLF11 expression also inhibited cell proliferation and increased chemosensitivity, whereas knockout of KLF11 did the opposite. With ChIP-Seq and RNA-Seq, we identified GPX4 as a downstream target of KLF11. Through ChIP-qPCR and dual luciferase assay, we clarified that KLF11 binds to the promoter region of GPX4 and represses its transcription. Restored GPX4 expression antagonized the ability of KLF11 to promote ferroptosis, increase chemotherapy sensitivity and inhibit cell proliferation in vitro and in vivo. Clinically, KLF11 declined in LUAD and its low expression was associated with reduced patient survival. Our findings established the function of KLF11 to promote ferroptosis in LUAD, thereby inhibiting cell proliferation and enhancing the efficacy of chemotherapy.


Subject(s)
Adenocarcinoma of Lung , Apoptosis Regulatory Proteins , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Repressor Proteins , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Humans , Cell Line, Tumor , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Cell Proliferation , Mitochondria
8.
Cancer Res ; 83(14): 2387-2404, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37184371

ABSTRACT

Ferroptosis is an iron-dependent form of regulated cell death induced by the lethal overload of lipid peroxides in cellular membranes. In recent years, modulating ferroptosis has gained attention as a potential therapeutic approach for tumor suppression. In the current study, retinol saturase (RETSAT) was identified as a significant ferroptosis mediator using a publicly accessible CRISPR/Cas9 screening dataset. RETSAT depletion protected tumor cells from lipid peroxidation and subsequent cell death triggered by various ferroptosis inducers. Furthermore, exogenous supplementation with retinoids, including retinol (the substrate of RETSAT) and its derivatives retinal and retinoic acid, also suppressed ferroptosis, whereas the product of RETSAT, 13, 14-dihydroretinol, failed to do so. As effective radical-trapping antioxidant, retinoids protected the lipid membrane from autoxidation and subsequent fragmentation, thus terminating the cascade of ferroptosis. Pseudotargeted lipidomic analysis identified an association between retinoid regulation of ferroptosis and lipid metabolism. Retinoic acid, but not 13, 14-dihydroretinoic acid, interacted with its nuclear receptor and activated transcription of stearoyl-CoA desaturase, which introduces the first double bond into saturated fatty acid and thus catalyzes the generation of monounsaturated fatty acid, a known ferroptosis suppressor. Therefore, RETSAT promotes ferroptosis by transforming retinol to 13, 14-dihydroretinol, thereby turning a strong anti-ferroptosis regulator into a relatively weak one. SIGNIFICANCE: Retinoids have ferroptosis-protective properties and can be metabolized by RETSAT to promote ferroptosis, suggesting the possibility of targeting retinoid metabolism in cancer as a treatment strategy to trigger ferroptosis.


Subject(s)
Ferroptosis , Neoplasms , Humans , Vitamin A/metabolism , Retinoids , Tretinoin/pharmacology , Tretinoin/metabolism , Lipid Metabolism , Neoplasms/genetics
9.
PeerJ ; 11: e15377, 2023.
Article in English | MEDLINE | ID: mdl-37180584

ABSTRACT

Background: Lung adenocarcinoma is one of the most prevalent cancers while ferroptosis is crucial for cancer therapies. This study aims to investigate the function and mechanism of hepatic nuclear factor 4 alpha (HNF4A) in lung adenocarcinomas' ferroptosis. Materials and Methods: HNF4A expression in ferroptotic A549 cells was detected. Then HNF4A was knocked down in A549 cells while overexpressed in H23 cells. Cells with changed HNF4A expression were tested for cytotoxicity and the level of cellular lipid peroxidation. The expression of cytochrome P450 oxidoreductase (POR) expression was examined after HNF4A was knocked down or overexpressed. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and dual-luciferase assays were performed to validate the regulation of HNF4A on POR. Finally, POR was restored in HNF4A-altered cells to check whether it restores the effect of HNF4A on ferroptosis. Results: We found that HNF4A expression significantly decreased in the ferroptosis of A549 cells, and this change can be blocked by deferoxamine, an inhibitor of ferroptosis. Knockdown of HNF4A inhibited ferroptosis in A549 cells while overexpression of HNF4A promoted ferroptosis in H23 cells. We identified a key ferroptosis-related gene, POR serves as a potential target gene of HNF4A, whose expression was significantly changed in lung adenocarcinoma cells knocking down or overexpressing HNF4A. We demonstrated that HNF4A was bound to the POR's promoter to enhance POR expression, and identified the binding sites via ChIP-qPCR and luciferase assays. Restoration of POR expression blocked the promoting effect of HNF4A on ferroptosis in lung adenocarcinoma. Conclusion: HNF4A promotes POR expression through binding to the POR's promoter, and subsequently promotes the ferroptosis of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , Humans , Ferroptosis/genetics , Transcriptional Activation , Cytochrome P-450 Enzyme System/metabolism , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Luciferases/metabolism
10.
PeerJ ; 11: e14996, 2023.
Article in English | MEDLINE | ID: mdl-36923501

ABSTRACT

Background: Lung adenocarcinoma is one of the most common tumors, and cisplatin is frequently used in treating lung adenocarcinoma patients. This study aimed to look into the roles and mechanisms of HNF4G in cisplatin resistance of lung adenocarcinoma. Materials & Methods: Cisplatin resistance and gene expression data of 542 cell lines from the CTRP and CCLE databases were analyzed. HNF4G expression was detected in the lung adenocarcinoma cell lines after treatment with various concentrations of cisplatin. Cisplatin sensitivity curves were detected in cells that overexpressed or knocked down HNF4G. The ChIP-Seq data were then analyzed to identify the targets of HNF4G involved in cisplatin resistance. Expression and phosphorylation of the MAPK6/Akt pathway were detected after HNF4G was overexpressed or knocked down. Finally, ChIP-qPCR and dual-luciferase assays were used to investigate the regulation of HNF4G on MAPK6. Results: In cell lines, high expression of HNF4G was significantly positively correlated with cisplatin resistance, and lung adenocarcinoma patients who had high HNF4G expression had a poor prognosis. Cisplatin treatment increased HNF4G expression, and overexpression of HNF4G significantly increased the resistance to cisplatin in A549 and HCC827 cells, whereas knockdown of HNF4G had the opposite effect. HNF4G overexpression increased MAPK6 expression and activated the MAPK6/Akt pathway, while an Akt inhibitor reduced the effects of HNF4G on cisplatin resistance. HNF4G bound to the MAPK6 promoter region, promoting MAPK6 expression, according to ChIP-qPCR and luciferase assays. Conclusion: By binding to the MAPK6 promoter region, HNF4G promotes MAPK6 expression and subsequent Akt phosphorylation, resulting in resistance to cisplatin in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Cisplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/drug therapy , Signal Transduction , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Adenocarcinoma of Lung/drug therapy , Hepatocyte Nuclear Factor 4/genetics
11.
J Immunol Res ; 2023: 4987832, 2023.
Article in English | MEDLINE | ID: mdl-36793588

ABSTRACT

Background: This study identified the expression and prognosis significance of secretory or membrane-associated proteins in KRAS lung adenocarcinoma (LUAD) and depicted the characteristics between the immune cell infiltration and the expression of these genes. Methods: Gene expression data of LUAD samples (n = 563) were accessed from The Cancer Genome Atlas (TCGA). The expression of secretory or membrane-associated proteins was compared among the KRAS-mutant, wild-type, and normal groups, as well as the subgroup of the KRAS-mutant group. We identified the survival-related differentially expressed secretory or membrane-associated proteins and conducted the functional enrichment analysis. Then, the characterization and association between their expression and the 24 immune cell subsets were investigated. We also constructed a scoring model to predict KRAS mutation by LASSO and logistic regression analysis. Results: Secretory or membrane-associated genes with differential expression (n = 74) across three groups (137 KRAS LUAD, 368 wild-type LUAD, and 58 normal groups) were identified, and the results of GO and KEGG indicated that they were strongly associated with immune cell infiltrations. Among them, ten genes were significantly related to the survival of patients with KRAS LUAD. The expression of IL37, KIF2, INSR, and AQP3 had the most significant correlations with immune cell infiltration. In addition, eight DEGs from the KRAS subgroups were highly correlated with immune infiltrations, especially TNFSF13B. Using LASSO-logistic regression, a KRAS mutation prediction model based on the 74 differentially expressed secretory or membrane-associated genes was built, and the accuracy was 0.79. Conclusion: The research investigated the relationship between the expression of KRAS-related secretory or membrane-associated proteins in LUAD patients with prognostic prediction and immune infiltration characterization. Our study demonstrated that secretory or membrane-associated genes were closely associated with the survival of KRAS LUAD patients and were strongly correlated to immune cell infiltration.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/genetics , Biological Transport , Mutation , Lung Neoplasms/genetics , Prognosis , Interleukin-1
12.
Clin Exp Med ; 23(3): 591-606, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35829844

ABSTRACT

Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.


Subject(s)
Neoplasms , Receptors, Retinoic Acid , Humans , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/therapeutic use , Tumor Microenvironment , Tretinoin/therapeutic use , Retinoids/pharmacology , Retinoids/therapeutic use , Cell Differentiation/physiology , Neoplasms/drug therapy
13.
Cereb Cortex ; 33(8): 4293-4304, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36030380

ABSTRACT

Neocortical vasoactive intestinal polypeptide-expressing (VIP+) interneurons display highly diverse morpho-electrophysiological and molecular properties. To begin to understand the function of VIP+ interneurons in cortical circuits, they must be clearly and comprehensively classified into distinct subpopulations based on specific molecular markers. Here, we utilized patch-clamp RT-PCR (Patch-PCR) to simultaneously obtain the morpho-electric properties and mRNA profiles of 155 VIP+ interneurons in layers 2 and 3 (L2/3) of the mouse somatosensory cortex. Using an unsupervised clustering method, we identified 3 electrophysiological types (E-types) and 2 morphological types (M-types) of VIP+ interneurons. Joint clustering based on the combined electrophysiological and morphological features resulted in 3 morpho-electric types (ME-types). More importantly, we found these 3 ME-types expressed distinct marker genes: ~94% of Sncg+ cells were ME-type 1, 100% of Mybpc1+ cells were ME-type 2, and ~78% of Parm1+ were ME-type 3. By clarifying the properties of subpopulations of cortical L2/3 VIP+ interneurons, this study establishes a basis for future investigations aiming to elucidate their physiological roles.


Subject(s)
Somatosensory Cortex , Vasoactive Intestinal Peptide , Animals , Mice , Electrophysiological Phenomena , Interneurons/physiology , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/metabolism , Neoplasm Proteins/metabolism , gamma-Synuclein/metabolism , Androgen-Binding Protein/metabolism
14.
Front Pharmacol ; 13: 1072589, 2022.
Article in English | MEDLINE | ID: mdl-36467089

ABSTRACT

Objective: The goal of this study was to create a risk model based on the ferroptosis gene set that affects lung adenocarcinoma (LUAD) patients' prognosis and to investigate the potential underlying mechanisms. Material and Methods: A cohort of 482 LUAD patients from the TCGA database was used to develop the prognostic model. We picked the module genes from the ferroptosis gene set using weighted genes co-expression network analysis (WGCNA). The least absolute shrinkage and selection operator (LASSO) and univariate cox regression were used to screen the hub genes. Finally, the multivariate Cox analysis constructed a risk prediction score model. Three other cohorts of LUAD patients from the GEO database were included to validate the prediction ability of our model. Furthermore, the differentially expressed genes (DEG), immune infiltration, and drug sensitivity were analyzed. Results: An eight-gene-based prognostic model, including PIR, PEBP1, PPP1R13L, CA9, GLS2, DECR1, OTUB1, and YWHAE, was built. The patients from the TCGA database were classified into the high-RS and low-RS groups. The high-RS group was characterized by poor overall survival (OS) and less immune infiltration. Based on clinical traits, we separated the patients into various subgroups, and RS had remarkable prediction performance in each subgroup. The RS distribution analysis demonstrated that the RS was significantly associated with the stage of the LUAD patients. According to the study of immune cell infiltration in both groups, patients in the high-RS group had a lower abundance of immune cells, and less infiltration was associated with worse survival. Besides, we discovered that the high-RS group might not respond well to immune checkpoint inhibitors when we analyzed the gene expression of immune checkpoints. However, drug sensitivity analysis suggested that high-RS groups were more sensitive to common LUAD agents such as Afatinib, Erlotinib, Gefitinib, and Osimertinib. Conclusion: We constructed a novel and reliable ferroptosis-related model for LUAD patients, which was associated with prognosis, immune cell infiltration, and drug sensitivity, aiming to shed new light on the cancer biology and precision medicine.

15.
Cell Oncol (Dordr) ; 45(6): 1383-1399, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223033

ABSTRACT

PURPOSE: Macrophages (MΦs) play a dual role in the promotion and suppression of lung adenocarcinoma (LUAD), the function of which is influenced by the metabolic status. The role of protein tyrosine phosphatase receptor type F (PTPRF) in cancer has not been elucidated, and its role in MΦs remains to be seen. METHODS: The Seahorse XFe 96 Cell Flow Analyzer detected glucose metabolism in tumor cells and macrophages. The expressions of FSCN1, M-CSF, IL4, PTPRF and IGF1 in macrophages were detected by Western blotting and qRT-PCR. Binding of FSCN1 and IGF1R was detected by co-immunoprecipitation. The tumor status in animals was observed using the IVIS Lumina III imaging system. RESULTS: We found that Fascin Actin-Bundling Protein 1 (FSCN1) activates the PI3K-AKT and JAK-STAT signaling pathways in LUAD cells via binding to IGF-1R, thereby promoting the secretion of cytokines such as IL4 and M-CSF. IL4 and M-CSF promote the expression of PTPRF in MΦs, leading to M2 polarization of MΦs by increasing glucose intake and lactate production. In return, M2-type MΦs act on LUAD cells by secreting cytokines such as IGF-1, CCL2, and IL10, which ultimately promote tumor progression. In vivo experiments proved that the knockdown of FSCN1 in A549 cells and PTPRF in MΦs greatly reduced LUAD proliferative and metastatic capacity, which was consistent with the in vitro findings. CONCLUSIONS: This study investigated the reprogramming effects of FSCN1 and PTPRF on inflammatory cytokines in the LUAD microenvironment, revealing potential mechanisms by which FSCN1 and PTPRF promote tumor progression and providing a new experimental basis for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Tumor Microenvironment , Macrophage Colony-Stimulating Factor/metabolism , Phosphoric Monoester Hydrolases/metabolism , Interleukin-4/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Adenocarcinoma of Lung/metabolism , Macrophages/metabolism , Cytokines/metabolism , Glycolysis , Lung Neoplasms/pathology , Gene Expression Regulation, Neoplastic
16.
Transl Oncol ; 26: 101562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228410

ABSTRACT

OBJECTIVES: ARNTL2, as a circadian transcription factor, has been recently proposed to play an important role in a variety of tumors. however, the role of ARNTL2 in lung carcinogenesis and progression remains unclear. The purpose of this study was to investigate the effect of ARNTL2 on the clinical characteristics and prognosis of lung adenocarcinoma and to explore the relationship between ARNTL2 and EMT, ferroptosis in lung adenocarcinoma. METHODS: The Cancer Genome Atlas (TCGA) database's multi-omics data were downloaded using the Xena browser. Based on the expression levels of ARNTL2, patients with lung adenocarcinoma from TCGA were divided into two groups: those with high ARNTL2 expression and those with low ARNTL2 expression. ARNTL2 was studied for its effects on lung adenocarcinoma's clinicopathological, genomic, and immunological characteristics. Furthermore, in vivo and in vitro assays were used to confirm the impact of ARNLT2 knockdown on lung adenocarcinoma cells. RESULTS: We found ARNTL2 is highly expressed in lung adenocarcinoma and was an independent predictor of a poor prognosis in patients with lung adenocarcinoma. In addition, we demonstrated that knockdown of ARNTL2 promoted ferroptosis, inhibited EMT, cell proliferation, migration and invasion in lung adenocarcinoma. In contrast, overexpressing ARNTL2 yielded the opposite results. CONCLUSIONS: ARNTL2 is an independent unfavorable prognostic factor for lung adenocarcinoma. It plays a facilitating role in the development of lung adenocarcinoma, especially in promoting EMT and inhibiting ferroptosis, revealing that ARNTL2 may be a potential biomarker for lung adenocarcinoma.

17.
Cells ; 11(18)2022 09 13.
Article in English | MEDLINE | ID: mdl-36139431

ABSTRACT

Intercellular material transport and information transmission in plants are carried out through the plasmodesmata (PD). The amount of callose around the PD controls channel permeability. In plants, ß-1,3-glucanase can degrade callose and affect plant growth and development. In this study, the gene producing PD-localized ß-1,3-glucanase and regulating the leaf trichomes is identified and named PdBG4. Based on functional analysis through a series of genetic manipulation assays, we found that the high expression of PdBG4 was associated with strong PD permeability and short Arabidopsis thaliana leaf trichomes. Conversely, the low expression of PdBG4 correlated with weak PD permeability and long Arabidopsis thaliana leaf trichomes. This study revealed that the PdBG4 gene negatively modulates leaf trichome growth and development by regulating PD permeability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Development , Plants/metabolism , Plasmodesmata/metabolism , Trichomes/metabolism
18.
J Immunol Res ; 2022: 4355386, 2022.
Article in English | MEDLINE | ID: mdl-35497874

ABSTRACT

Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/therapy , Humans , Immune Tolerance , Lung Neoplasms/therapy , T-Lymphocytes, Regulatory , Tumor Microenvironment
19.
Front Microbiol ; 13: 859352, 2022.
Article in English | MEDLINE | ID: mdl-35586863

ABSTRACT

To figure out the molecular mechanism in the esophageal squamous carcinoma (ESCC) with the discrepancy in the tissue-resident microbiota, we selected clinical features, RNA sequences, and transcriptomes of ESCC patients from The Cancer Genome Atlas (TCGA) website and detailed tissue-resident microbiota information from The Cancer Microbiome Atlas (n = 60) and explored the infiltration condition of particular microbiota in each sample. We classified the tissue-resident micro-environment of ESCC into two clusters (A and B) and built a predictive classifier model. Cluster A has a higher proportion of certain tissue-resident microbiota with comparatively better survival, while Cluster B has a lower proportion of certain tissue-resident microbiota with comparatively worse survival. We showed traits of gene and clinicopathology in the esophageal tissue-resident micro-environment (ETM) phenotypes. By comparing the two clusters' molecular signatures, we find that the two clusters have obvious differences in gene expression and mutation, which lead to pathway expression discrepancy. Several pathways are closely related to tumorigenesis. Our results may demonstrate a synthesis of the infiltration pattern of the esophageal tissue-resident micro-environment in ESCC. We reveal the mechanism of esophageal tissue-resident microbiota discrepancy in ESCC, which may contribute to therapy progress for patients with ESCC.

20.
Front Oncol ; 12: 843528, 2022.
Article in English | MEDLINE | ID: mdl-35296002

ABSTRACT

Background: Identified as a hallmark of cancer, the dysregulated cell cycle progression plays an important role in the promotion and progression of lung adenocarcinoma (LUAD). However, the genomic and microenvironment differences between cell cycle progression pathway altered/non-altered LUAD patients remain to be elucidated. Materials and Methods: Data of this study were obtained from The Cancer Genome Atlas (TCGA), including simple nucleotide variation, copy number variation (CNV), RNA-seq gene expression, miRNA expression, survival, and clinical information. Besides, 34 LUAD samples from our institution were used as a validation cohort. Differentially expressed genes (DEGs), enrichment analysis, and immune cell infiltration were detected. At last, we built a LASSO-binary Logistic regression model to predict the cell-cycle-related gene mutation (CDKN2A, CCND1, CDK4, CCNE1, and RB1) in LUAD patients and further verified it in the samples from our institution. Results: Based on the cell cycle progression pathway status, the LUAD patients were divided into the mutation (n=322) and wild (n=46) groups. Compared to the wild group, the mutation group had a higher mutational load and CNV. Among the 16684 protein-coding genes analyzed, 302 were upregulated, and 354 were downregulated in the mutation group. Enrichment analysis indicated that these DEGs were closely related to metabolism items. After performing immune cell infiltration analysis of 22 immune cells, we found the proportion of 5 immune cells such as monocytes (P<0.01) and dendritic cells (P<0.01) were higher in the wild group. Finally, a cell-cycle-related 15-signature model was built by LASSO-Logistic regression analysis, which could predict the cell cycle progression pathway-related gene mutation (CDKN2A, CCND1, CDK4, CCNE1, and RB1) in LUAD patients. The validation cohorts showed the sensitivity and specificity of this model were 0.667 and 0.929, respectively. Conclusion: The genomic and microenvironment characteristics differed between the cell cycle progression pathway altered/non-altered patients with LUAD. Our findings may provide new insight into personalized treatment for LUAD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...