Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Headache Pain ; 25(1): 84, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773396

ABSTRACT

BACKGROUND: Prior neuroimaging studies on vestibular migraine (VM) have extensively certified the functional and structural alterations in multiple brain regions and networks. However, few studies have assessed the cerebral blood flow (CBF) in VM patients using arterial spin labeling (ASL). The present study aimed to investigate CBF and functional connectivity (FC) alterations in VM patients during interictal periods. METHODS: We evaluated 52 VM patients and 46 healthy controls (HC) who received resting-state pseudo-continuous ASL and functional magnetic resonance imaging (fMRI) scanning. Comparisons of voxel-based CBF and seed-based FC were performed between the two groups. Brain regions showed significant group differences in CBF analyses were chosen as seeds in FC analyses. Additionally, the associations between abnormal imaging results and clinical features were explored. RESULTS: Compared with HC, VM patients showed higher normalized CBF in the right precentral gyrus (PreCG), left postcentral gyrus (PostCG), left superior frontal gyrus and bilateral insular (p < 0.05, FDR corrected). Furthermore, VM patients exhibited increased FC between the right PreCG and areas of the left PostCG, left cuneus and right lingual gyrus (p < 0.05, FDR corrected). In addition, we observed decreased FC between the left insular and regions of the left thalamus and right anterior cingulate cortex, as well as increased FC between the left insular and right fusiform gyrus in VM patients (p < 0.05, FDR corrected). Moreover, these variations in brain perfusion and FC were significantly correlated with multiple clinical features including frequency of migraine symptoms, frequency of vestibular symptoms and disease duration of VM (all p < 0.05). CONCLUSIONS: Patients with VM during interictal period showed hyperperfusion and abnormal resting-state FC in brain regions potentially contributed to disrupted multi-sensory and autonomic processing, as well as impaired ocular motor control, pain modulation and emotional regulation. Our study provided novel insights into the complex neuropathology of VM from a CBF perspective.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging , Migraine Disorders , Spin Labels , Humans , Female , Male , Migraine Disorders/physiopathology , Migraine Disorders/diagnostic imaging , Adult , Cerebrovascular Circulation/physiology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain/blood supply , Vestibular Diseases/physiopathology , Vestibular Diseases/diagnostic imaging
2.
Neural Regen Res ; 18(5): 1033-1039, 2023 May.
Article in English | MEDLINE | ID: mdl-36254989

ABSTRACT

We previously reported that postsynaptic density-93 mediates neuron-microglia crosstalk by interacting with amino acids 357-395 of C X3 C motif chemokine ligand 1 (CX3CL1) to induce microglia polarization. More importantly, the peptide Tat-CX3CL1 (comprising amino acids 357-395 of CX3CL1) disrupts the interaction between postsynaptic density-93 and CX3CL1, reducing neurological impairment and exerting a protective effect in the context of acute ischemic stroke. However, the mechanism underlying these effects remains unclear. In the current study, we found that the pro-inflammatory M1 phenotype increased and the anti-inflammatory M2 phenotype decreased at different time points. The M1 phenotype increased at 6 hours after stroke and peaked at 24 hours after perfusion, whereas the M2 phenotype decreased at 6 and 24 hours following reperfusion. We found that the peptide Tat-CX3CL1 (357-395aa) facilitates microglial polarization from M1 to M2 by reducing the production of soluble CX3CL1. Furthermore, the a disintegrin and metalloprotease domain 17 (ADAM17) inhibitor GW280264x, which inhibits metalloprotease activity and prevents CX3CL1 from being sheared into its soluble form, facilitated microglial polarization from M1 to M2 by inhibiting soluble CX3CL1 formation. Additionally, Tat-CX3CL1 (357-395aa) attenuated long-term cognitive deficits and improved white matter integrity as determined by the Morris water maze test at 31-34 days following surgery and immunofluorescence staining at 35 days after stroke, respectively. In conclusion, Tat-CX3CL1 (357-395aa) facilitates functional recovery after ischemic stroke by promoting microglial polarization from M1 to M2. Therefore, the Tat-CX3CL1 (357-395aa) is a potential therapeutic agent for ischemic stroke.

3.
Nat Chem ; 11(12): 1098-1105, 2019 12.
Article in English | MEDLINE | ID: mdl-31636391

ABSTRACT

In an effort to obtain the maximum atom efficiency, research on heterogeneous single-atom catalysts has intensified recently. Anchoring organometallic homogeneous catalysts to surfaces creates issues with retaining mononuclearity and activity, while the several techniques developed to prepare atomically dispersed precious metals on oxide supports are usually complex. Here we report a facile one-pot synthesis of inorganometallic mononuclear gold complexes formed in alkaline solutions as robust and versatile single-atom gold catalysts. The complexes remain intact on impregnation onto supports or after drying in air to give a crystalline powder. They can be used to interrogate the nuclearity of the catalytically active gold site for reactions known to be catalysed by oxidized gold species. We show that the [Au1-Ox]- cluster directs the heterogeneous coupling of two methanol molecules to methyl formate and hydrogen with a 100% selectivity below 180 °C. The reaction is industrially important as well as the key step in methanol steam reforming on gold catalysts.

4.
Nature ; 551(7682): 605-608, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29189776

ABSTRACT

An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful chemicals.

5.
Angew Chem Int Ed Engl ; 55(43): 13441-13445, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27717086

ABSTRACT

Direct conversion of methane to chemical feedstocks such as methanol under mild conditions is a challenging but ideal solution for utilization of methane. Pd1 O4 single-sites anchored on the internal surface of micropores of a microporous silicate exhibit high selectivity and activity in transforming CH4 to CH3 OH at 50-95 °C in aqueous phase through partial oxidation of CH4 with H2 O2 . The selectivity for methanol production remains at 86.4 %, while the activity for methanol production at 95 °C is about 2.78 molecules per Pd1 O4 site per second when 2.0 wt % CuO is used as a co-catalyst with the Pd1 O4 @ZSM-5. Thermodynamic calculations suggest that the reaction toward methanol production is highly favorable compared to formation of a byproduct, methyl peroxide.

6.
Nat Commun ; 6: 7938, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26294191

ABSTRACT

A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh1Co3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh1Co3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.

7.
Nat Commun ; 6: 7798, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26239771

ABSTRACT

It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo2O4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo2O4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo2O4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH3O with a following dehydrogenation to -CH2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.

8.
Langmuir ; 30(28): 8558-69, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24896721

ABSTRACT

The oxidation of methane to methanol is a pathway to utilizing this relatively abundant, inexpensive energy resource. Here we report a new catalyst, bent mono(µ-oxo)dinickel anchored on an internal surface of micropores,which is active for direct oxidation. It is synthesized from the direct loading of a nickel precursor to the internal surface of micropores of ZSM5 following activation in O2. Ni 2p3/2 of this bent mono(µ-oxo)dinickel species formed on the internal surface of ZSM5 exhibits a unique photoemission feature, which distinguishes the mono(µ-oxo)dinickel from NiO nanoparticles. The formation of the mono(µ-oxo)dinickel species was confirmed with X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). This mono(µ-oxo)dinickel species is active for the direct oxidation of methane to methanol under the mild condition of a temperature as low as 150 °C in CH4 at 1 bar. In-situ studies using UV-vis, XANES, and EXAFS suggest that this bent mono(µ-oxo)dinickel species is the active site for the direct oxidation of methane to methanol. The energy barrier of this direct oxidation of methane is 83.2 kJ/mol.

9.
J Hazard Mater ; 274: 115-23, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24769848

ABSTRACT

A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested.


Subject(s)
Amines/chemistry , Bacteria/isolation & purification , Magnetite Nanoparticles/chemistry , Poliovirus/isolation & purification , Silicon Dioxide/chemistry , Water Pollutants/isolation & purification , Adsorption , Antibodies, Bacterial/chemistry , Bacteria/chemistry , Bacteria/immunology , Magnetic Phenomena , Poliovirus/chemistry , Water Pollutants/chemistry , Water Purification/methods
10.
Nat Genet ; 46(1): 45-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24212883

ABSTRACT

To explore the contribution of functional coding variants to psoriasis, we analyzed nonsynonymous single-nucleotide variants (SNVs) across the genome by exome sequencing in 781 psoriasis cases and 676 controls and through follow-up validation in 1,326 candidate genes by targeted sequencing in 9,946 psoriasis cases and 9,906 controls from the Chinese population. We discovered two independent missense SNVs in IL23R and GJB2 of low frequency and five common missense SNVs in LCE3D, ERAP1, CARD14 and ZNF816A associated with psoriasis at genome-wide significance. Rare missense SNVs in FUT2 and TARBP1 were also observed with suggestive evidence of association. Single-variant and gene-based association analyses of nonsynonymous SNVs did not identify newly associated genes for psoriasis in the regions subjected to targeted resequencing. This suggests that coding variants in the 1,326 targeted genes contribute only a limited fraction of the overall genetic risk for psoriasis.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Adult , Aminopeptidases/genetics , Asian People/genetics , CARD Signaling Adaptor Proteins/genetics , Case-Control Studies , Connexin 26 , Connexins/genetics , Female , Fucosyltransferases/genetics , Genome-Wide Association Study , Guanylate Cyclase/genetics , Haplotypes , Humans , Male , Membrane Proteins/genetics , Minor Histocompatibility Antigens , Mutation, Missense , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Receptors, Interleukin/genetics , Young Adult , Galactoside 2-alpha-L-fucosyltransferase
11.
Nano Lett ; 13(7): 3310-4, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23731229

ABSTRACT

Transition metal oxide is one of the main categories of heterogeneous catalysts. They exhibit multiple phases and oxidation states. Typically, they are prepared and/or synthesized in solution or by vapor deposition. Here we report that a controlled reaction, in a gaseous environment, after synthesis can restructure the as-synthesized transition metal oxide nanorods into a new catalytic phase. Co3O4 nanorods with a preferentially exposed (110) surface can be restructured into nonstoichiometric CoO1-x nanorods. Structure and surface chemistry during the process were tracked with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and environmental transmission electron microscopy (E-TEM). The restructured nanorods are highly active in reducing NO with CO, with 100% selectivity for the formation of N2 in temperatures of 250-520 °C. AP-XPS and E-TEM studies revealed the nonstoichiometric CoO1-x nanorods with a rock-salt structure as the active phase responsible for the 100% selectivity. This study suggests a route to generate new oxide catalysts.

12.
J Am Chem Soc ; 135(22): 8283-93, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23611190

ABSTRACT

Water-gas shift (WGS) reactions on Co3O4 nanorods and Co3O4 nanorods anchoring singly dispersed Pt atoms were explored through building correlation of catalytic performance to surface chemistry of catalysts during catalysis using X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy (AP-XPS), and environmental TEM. The active phase of pure Co3O4 during WGS is nonstoichiometric cobalt monoxide with about 20% oxygen vacancies, CoO0.80. The apparent activation energy (Ea) in the temperature range of 180-240 °C is 91.0 ± 10.5 kJ mol(-1). Co3O4 nanorods anchoring Pt atoms (Pt/Co3O4) are active for WGS with a low Ea of 50.1 ± 5.0 kJ mol(-1) in the temperature range of 150-200 °C. The active surface of this catalyst is singly dispersed Pt1Co(n) nanoclusters anchored on Co3O4 (Pt1/Co3O4), evidenced by in situ studies of extended X-ray absorption fine structure spectroscopy. In the temperature range of 200-300 °C, catalytic in situ studies suggested the formation of Pt(m)Co(m') nanoclusters along with the reduction of Co3O4 substrate to CoO(1-x). The new catalyst, Pt(m)Co(m')/CoO(1-x) is active for WGS with a very low Ea of 24.8 ± 3.1 kJ mol(-1) in the temperature range of 300-350 °C. The high activity could result from a synergy of Pt(m)Co(m') nanoclusters and surface oxygen vacancies of CoO(1-x).

13.
Chem Commun (Camb) ; 49(39): 4385-7, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23323268

ABSTRACT

A Fe-Cu-Al-O water gas shift catalyst with a Fe : Cu atomic ratio of 4 : 1 upon pretreatment at 350 °C in H2 exhibits a conversion higher than a physical mixture of Fe-Al-O and Cu-Al-O by ~40% over a temperature range of 300 °C-450 °C. In situ ambient pressure X-ray photoelectron spectroscopy studies suggest that the surface region of Fe-Cu-Al-O was restructured into a double-layer structure consisting of a surface layer of Fe3O4 and a metallic Cu layer below it upon pretreatment at 350 °C. The strong metal (Cu)-oxide (Fe3O4) interface effect of this double layer structure enhances the catalytic activity of Fe3O4 in WGS.

14.
J Chem Phys ; 136(11): 114201, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22443756

ABSTRACT

We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

15.
Chemphyschem ; 10(1): 270-5, 2009 Jan 12.
Article in English | MEDLINE | ID: mdl-19067441

ABSTRACT

Hydroxyl (OH) is identified and characterized on the Ni(111) surface by high-resolution electron energy loss spectroscopy. We find clear evidence of stretching, bending, and translational modes that differ significantly from modes observed for H(2)O and O on Ni(111). Hydroxyl may be produced from water by two different methods. Annealing of water co-adsorbed with atomic oxygen at 85 K to above 170 K leads to the formation of OH with simultaneous desorption of excess water. Pure water layers treated in the same fashion show no dissociation. However, the exposure of pure water to 20 eV electrons at temperatures below 120 K produces OH in the presence of adsorbed H(2)O. In combination with temperature-programmed desorption studies, we show that the OH groups recombine between 180 and 240 K to form O and immediately desorbing H(2)O. The lack of influence of co-adsorbed H(2)O at 85 K on the O-H stretching mode indicates that OH does not participate in a hydrogen-bonding network.

16.
Phys Chem Chem Phys ; 10(32): 4994-5003, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18688545

ABSTRACT

We have studied the surface coverage dependence of the co-adsorption of D and D(2)O on the Ni(111) surface under UHV conditions. We use detailed temperature-programmed desorption studies and high resolution electron energy loss spectroscopy to show how pre-covering the surface with various amounts of D affects adsorption and desorption of D(2)O. Our results show that the effects of co-adsorption are strongly dependent on D-coverage. In the deuterium pre-coverage range of 0-0.3 ML, adsorption of deuterium leaves a fraction of the available surface area bare for D(2)O adsorption, which shows no significant changes compared to adsorption on the bare surface. Our data indicate phase segregation of hydrogen and water into islands. At low post-coverages, D(2)O forms a two-phase system on the remaining bare surface that shows zero-order desorption kinetics. This two phase system likely consists of a 2-D solid phase of extended islands of hexamer rings and a 2-D water gas phase. Increasing the water post-dose leads at first to 'freezing' of the 2-D gas and is followed by formation of ordered, multilayered water islands in-between the deuterium islands. For deuterium pre-coverages between 0.3 and 0.5 ML, our data may be interpreted that the water hexamer ring structure, (D(2)O)(6), required for the formation of an ordered multilayer, does not form anymore. Instead, more disordered linear and branched chains of water molecules grow in-between the extended, hydrophobic deuterium islands. These deuterium islands have a D-atom density in agreement with a (2x2)-2D structure. The disordered water structures adsorbed in-between form nucleation sites for growth of 3-D water structures. Loss of regular lateral hydrogen bonding and weakened interaction with the substrate reduces the binding energy of water significantly in this regime and results in lowering of the desorption temperature. At deuterium pre-coverages greater than 0.5 ML, the saturated (2x2)-2D structure mixes with (1x1)-1D patches. The mixed structures are also hydrophobic. On such surfaces, submonolayer doses of water lead to formation of 3-D water structures well before wetting the entire hydrogen-covered surface.

17.
Phys Chem Chem Phys ; 10(16): 2227-32, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18404230

ABSTRACT

We have used temperature-programmed desorption in combination with specular and off-specular high resolution electron energy loss spectroscopy to study the interaction of H(2)O and D(2)O with the bare and hydrogen-covered Ni(111) surface. Our results for the bare metal surface agree with previous reports and we are able to relate two prominent features in vibrational spectra to nuclear motions at the surface. Pre-covering Ni(111) with hydrogen alters both adsorption and desorption of water significantly. The strong H-Ni bond does not allow for isotopic exchange with co-adsorbed D(2)O. Strong resemblance of desorption traces and vibrational spectra of submonolayer coverages on H-covered Ni(111) and multilayers on bare Ni(111) suggests that adsorption of hydrogen makes this nickel surface hydrophobic.

SELECTION OF CITATIONS
SEARCH DETAIL
...