Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38593815

ABSTRACT

Objective. The primary objective of this study is to address the reconstruction time challenge in magnetic particle imaging (MPI) by introducing a novel approach named SNR-peak-based frequency selection (SPFS). The focus is on improving spatial resolution without compromising reconstruction speed, thereby enhancing the clinical potential of MPI for real-time imaging.Approach. To overcome the trade-off between reconstruction time and spatial resolution in MPI, the researchers propose SPFS as an innovative frequency selection method. Unlike conventional SNR-based selection, SPFS prioritizes frequencies with signal-to-noise ratio (SNR) peaks that capture crucial system matrix information. This adaptability to varying quantities of selected frequencies enhances versatility in the reconstruction process. The study compares the spatial resolution of MPI reconstruction using both SNR-based and SPFS frequency selection methods, utilizing simulated and real device data.Main results.The research findings demonstrate that the SPFS approach substantially improves image resolution in MPI, especially when dealing with a limited number of frequency components. By focusing on SNR peaks associated with critical system matrix information, SPFS mitigates the spatial resolution degradation observed in conventional SNR-based selection methods. The study validates the effectiveness of SPFS through the assessment of MPI reconstruction spatial resolution using both simulated and real device data, highlighting its potential to address a critical limitation in the field.Significance.The introduction of SPFS represents a significant breakthrough in MPI technology. The method not only accelerates reconstruction time but also enhances spatial resolution, thus expanding the clinical potential of MPI for various applications. The improved real-time imaging capabilities of MPI, facilitated by SPFS, hold promise for advancements in drug delivery, plaque assessment, tumor treatment, cerebral perfusion evaluation, immunotherapy guidance, andin vivocell tracking.


Subject(s)
Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Time Factors , Phantoms, Imaging , Molecular Imaging/methods
2.
Phys Med Biol ; 69(3)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38168021

ABSTRACT

Objective. Imaging of superparamagnetic iron oxide nanoparticles based on their non-linear response to alternating magnetic fields shows promise for imaging cells and vasculature in healthy and diseased tissue. Such imaging can be achieved through x-space reconstruction typically along a unidirectional Cartesian trajectory, which rapidly convolutes the particle distribution with a 'anisotropic blurring' point spread function (PSF), leading to images with anisotropic resolution.Approach. Here we propose combining the time domine-system matrix and x-space reconstruction methods into a forward model, where the output of the forward model is the PSF-blurred x-space reconstructed image. We then treat the blur as an inverse problem solved by Kaczmarz iteration.Main results. After we have proposed the method optimization, the normal resolution of simulation and device images has been increased from 3.5 mm and 5.25 mm to 1.5 mm and 3.25 mm, which has reached the level in the tangential resolution. Quantitative indicators of image quality such as PSNR and SSIM have also been greatly improved.Significance. Simulation and imaging of real phantoms indicate that our approach provides better isotropic resolution and image quality than the x-space method alone or other methods for removing PSF blur. Using our proposed method to optimize the image quality of x-space reconstructed images using unidirectional Cartesian trajectories, it will promote the clinical application of MPI in the future.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Magnetic Fields , Phantoms, Imaging , Magnetic Iron Oxide Nanoparticles
3.
Comput Methods Programs Biomed ; 240: 107721, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506601

ABSTRACT

BACKGROUND AND OBJECTIVE: Medical hyperspectral images (MHSIs) are used for a contact-free examination of patients without harmful radiation. However, high-dimensionality images contain large amounts of data that are sparsely distributed in a high-dimensional space, which leads to the "curse of dimensionality" (called Hughes' phenomenon) and increases the complexity and cost of data processing and storage. Hence, there is a need for spectral dimensionality reduction before the clinical application of MHSIs. Some dimensionality-reducing strategies have been proposed; however, they distort the data within MHSIs. METHODS: To compress dimensionality without destroying the original data structure, we propose a method that involves data gravitation and weak correlation-based ranking (DGWCR) for removing bands of noise from MHSIs while clustering signal-containing bands. Band clustering is done by using the connection centre evolution (CCE) algorithm and selecting the most representative bands in each cluster based on the composite force. The bands within the clusters are ranked using the new entropy-containing matrix, and a global ranking of bands is obtained by applying an S-shaped strategy. The source code is available at https://www.github.com/zhangchenglong1116/DGWCR. RESULTS: Upon feeding the reduced-dimensional images into various classifiers, the experimental results demonstrated that the small number of bands selected by the proposed DGWCR consistently achieved higher classification accuracy than the original data. Unlike other reference methods (e.g. the latest deep-learning-based strategies), DGWCR chooses the spectral bands with the least redundancy and greatest discrimination. CONCLUSION: In this study, we present a method for efficient band selection for MHSIs that alleviates the "curse of dimensionality". Experiments were validated with three MHSIs in the human brain, and they outperformed several other band selection methods, demonstrating the clinical potential of DGWCR.


Subject(s)
Algorithms , Brain , Humans , Software , Cluster Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...