Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
JCI Insight ; 9(4)2024 02 22.
Article in English | MEDLINE | ID: mdl-38385744

ABSTRACT

Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.


Subject(s)
Crohn Disease , MicroRNAs , Adult , Animals , Mice , Humans , Child , Crohn Disease/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Inflammation
2.
Int J Epidemiol ; 53(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205821

ABSTRACT

BACKGROUND: Life course epidemiology examines associations between repeated measures of risk and health outcomes across different phases of life. Empirical research, however, is often based on discrete-time models that assume that sporadic measurement occasions fully capture underlying long-term continuous processes of risk. METHODS: We propose (i) the functional relevant life course model (fRLM), which treats repeated, discrete measures of risk as unobserved continuous processes, and (ii) a testing procedure to assign probabilities that the data correspond to conceptual models of life course epidemiology (critical period, sensitive period and accumulation models). The performance of the fRLM is evaluated with simulations, and the approach is illustrated with empirical applications relating body mass index (BMI) to mRNA-seq signatures of chronic kidney disease, inflammation and breast cancer. RESULTS: Simulations reveal that fRLM identifies the correct life course model with three to five repeated assessments of risk and 400 subjects. The empirical examples reveal that chronic kidney disease reflects a critical period process and inflammation and breast cancer likely reflect sensitive period mechanisms. CONCLUSIONS: The proposed fRLM treats repeated measures of risk as continuous processes and, under realistic data scenarios, the method provides accurate probabilities that the data correspond to commonly studied models of life course epidemiology. fRLM is implemented with publicly-available software.


Subject(s)
Breast Neoplasms , Renal Insufficiency, Chronic , Humans , Female , Life Change Events , Bayes Theorem , Inflammation , Renal Insufficiency, Chronic/epidemiology , Breast Neoplasms/epidemiology
3.
Sci Rep ; 14(1): 1255, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218990

ABSTRACT

Disparities in socio-economic status (SES) predict many immune system-related diseases, and previous research documents relationships between SES and the immune cell transcriptome. Drawing on a bioinformatically-informed network approach, we situate these findings in a broader molecular framework by examining the upstream regulators of SES-associated transcriptional alterations. Data come from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative sample of 4543 adults in the United States. Results reveal a network-of differentially expressed genes, transcription factors, and protein neighbors of transcription factors-that shows widespread SES-related dysregulation of the immune system. Mediational models suggest that body mass index (BMI) plays a key role in accounting for many of these associations. Overall, the results reveal the central role of upstream regulators in socioeconomic differences in the molecular basis of immunity, which propagate to increase risk of chronic health conditions in later-life.


Subject(s)
Social Class , Transcriptome , Adult , Adolescent , Humans , United States , Longitudinal Studies , Gene Expression Profiling , Transcription Factors/genetics , Socioeconomic Factors
4.
BMC Genomics ; 24(1): 641, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884859

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS: We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION: The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs , Humans , Animals , Mice , Cell Differentiation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Intestine, Small/metabolism , Organoids/metabolism
5.
Res Sq ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37720018

ABSTRACT

Disparities in socio-economic status (SES) predict many immune system-related diseases, and previous research documents relationships between SES and the immune cell transcriptome. Drawing on a bioinformatically-informed network approach, we situate these findings in a broader molecular framework by examining the upstream regulators of SES-associated transcriptional alterations. Data come from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative sample of 4,543 adults in the United States. Results reveal a network-of differentially-expressed genes, transcription factors, and protein neighbors of transcription factors- that shows widespread SES-related dysregulation of the immune system. Mediational models suggest that body mass index plays a key role in accounting for many of these associations. Overall, the results reveal the central role of upstream regulators in socioeconomic differences in the molecular basis of immunity, which propagate to increase risk of chronic health conditions in later-life.

6.
Discov Soc Sci Health ; 3(1): 14, 2023.
Article in English | MEDLINE | ID: mdl-37469576

ABSTRACT

Life course epidemiology seeks to understand the intricate relationships between risk factors and health outcomes across different stages of life to inform prevention and intervention strategies to optimize health throughout the lifespan. However, extant evidence has predominantly been based on separate analyses of data from individual birth cohorts or panel studies, which may not be sufficient to unravel the complex interplay of risk and health across different contexts. We highlight the importance of a multi-study perspective that enables researchers to: (a) Compare and contrast findings from different contexts and populations, which can help identify generalizable patterns and context-specific factors; (b) Examine the robustness of associations and the potential for effect modification by factors such as age, sex, and socioeconomic status; and (c) Improve statistical power and precision by pooling data from multiple studies, thereby allowing for the investigation of rare exposures and outcomes. This integrative framework combines the advantages of multi-study data with a life course perspective to guide research in understanding life course risk and resilience on adult health outcomes by: (a) Encouraging the use of harmonized measures across studies to facilitate comparisons and synthesis of findings; (b) Promoting the adoption of advanced analytical techniques that can accommodate the complexities of multi-study, longitudinal data; and (c) Fostering collaboration between researchers, data repositories, and funding agencies to support the integration of longitudinal data from diverse sources. An integrative approach can help inform the development of individualized risk scores and personalized interventions to promote health and well-being at various life stages.

7.
Am J Epidemiol ; 192(12): 1981-1990, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37431780

ABSTRACT

Diverse manifestations of biological aging often reflect disparities in socioeconomic status (SES). In this paper, we examine associations between indicators of SES and an mRNA-based aging signature during young adulthood, before clinical indications of aging are common. We use data from wave V (2016-2018) of the National Longitudinal Study of Adolescent to Adult Health, a nationally representative study of adults aged 33-43 years, with transcriptomic data from a subset of 2,491 participants. Biological aging is measured using 1) a composite transcriptomic aging signature previously identified by Peters et al.'s out-of-sample meta-analysis (Nat Commun. 2015;6:8570) and 2) 9 subsets that represent functional pathways of coexpressed genes. SES refers to income, education, occupation, subjective social status, and a composite measure combining these 4 dimensions. We examine hypothesized mechanisms through which SES could affect aging: body mass index, smoking, health insurance status, difficulty paying bills, and psychosocial stress. We find that SES-especially the composite measure and income-is associated with transcriptomic aging and immune, mitochondrial, ribosomal, lysosomal, and proteomal pathways. Counterfactual mediational models suggest that the mediators partially account for these associations. The results thus reveal that numerous biological pathways associated with aging are already linked to SES in young adulthood.


Subject(s)
Aging , Social Class , Adult , Adolescent , Humans , Young Adult , Longitudinal Studies , Aging/genetics , Smoking , Income , Socioeconomic Factors
8.
BMC Genomics ; 23(1): 792, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457077

ABSTRACT

Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Cell Survival/genetics , Colorectal Neoplasms/genetics , Genotype , MicroRNAs/genetics , Organoids
9.
Proc Natl Acad Sci U S A ; 119(43): e2103088119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252037

ABSTRACT

Many common chronic diseases of aging are negatively associated with socioeconomic status (SES). This study examines whether inequalities can already be observed in the molecular underpinnings of such diseases in the 30s, before many of them become prevalent. Data come from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a large, nationally representative sample of US subjects who were followed for over two decades beginning in adolescence. We now have transcriptomic data (mRNA-seq) from a random subset of 4,543 of these young adults. SES in the household-of-origin and in young adulthood were examined as covariates of a priori-defined mRNA-based disease signatures and of specific gene transcripts identified de novo. An SES composite from young adulthood predicted many disease signatures, as did income and subjective status. Analyses highlighted SES-based inequalities in immune, inflammatory, ribosomal, and metabolic pathways, several of which play central roles in senescence. Many genes are also involved in transcription, translation, and diverse signaling mechanisms. Average causal-mediated effect models suggest that body mass index plays a key role in accounting for these relationships. Overall, the results reveal inequalities in molecular risk factors for chronic diseases often decades before diagnoses and suggest future directions for social signal transduction models that trace how social circumstances regulate the human genome.


Subject(s)
Social Class , Adolescent , Adult , Body Mass Index , Chronic Disease , Humans , Longitudinal Studies , RNA, Messenger , Socioeconomic Factors , Young Adult
10.
J Health Soc Behav ; 63(3): 446-469, 2022 09.
Article in English | MEDLINE | ID: mdl-35135376

ABSTRACT

The idea that socioeconomic differences are a "fundamental cause" of health and well-being is the basis for large volumes of research. However, one of the challenges in this area is that of linking socioeconomic positions to etiological mechanisms in theoretically informative ways. The situation is doubly challenging because the expression and meaning of socioeconomic positions and the mechanisms they activate change over time. Focusing on depression and applying mediation analysis to data from a large multinational sample from European countries, we find strong support for a three-stage model where occupational differences are largely mediated by exposure to precarious work, which itself is mediated by social marginality. The model is largely robust across welfare state regimes. Ultimately, the research extends fundamental cause perspectives by highlighting connections between "old" and "new" dimensions of socioeconomic status and the social and social psychological sequelae that connect them to psychological well-being.


Subject(s)
Depression , Social Welfare , Europe , Humans , Social Class , Socioeconomic Factors
11.
J Dev Life Course Criminol ; 8(1): 151-171, 2022.
Article in English | MEDLINE | ID: mdl-35223378

ABSTRACT

The Zurich Project on the Social Development from Childhood to Adulthood (z-proso) began in 2004 in response to the need for a better evidence base to support optimal child social development and prevent crime and violence. Since then, the study has tracked the development of a diverse sample of youths (N = 1,675 in the target sample; ~50% female) from age 7 (n = 1,360) to age 20 (n = 1,180), with primary data collection waves at ages 7, 8, 9, 10, 11, 12, 13, 15, 17, and 20. The study uses a multi-method, multi-informant design that combines teacher, youth, and parent reports with observational and behavioural measures, biosampling, functional imaging, and ecological momentary assessment. Analyses of the data have contributed important evidence to a diversity of topics in child and adolescent development, illuminating the developmental roots of crime and aggression, the impacts of exposure to different forms and combinations of victimisation, and trajectories of mental health and neurodevelopmental symptoms.

12.
Cell Mol Gastroenterol Hepatol ; 13(6): 1717-1740, 2022.
Article in English | MEDLINE | ID: mdl-35158099

ABSTRACT

BACKGROUND & AIMS: The intestinal barrier comprises a monolayer of specialized intestinal epithelial cells (IECs) that are critical in maintaining mucosal homeostasis. Dysfunction within various IEC fractions can alter intestinal permeability in a genetically susceptible host, resulting in a chronic and debilitating condition known as Crohn's disease (CD). Defining the molecular changes in each IEC type in CD will contribute to an improved understanding of the pathogenic processes and the identification of cell type-specific therapeutic targets. We performed, at single-cell resolution, a direct comparison of the colonic epithelial cellular and molecular landscape between treatment-naïve adult CD and non-inflammatory bowel disease control patients. METHODS: Colonic epithelial-enriched, single-cell sequencing from treatment-naïve adult CD and non-inflammatory bowel disease patients was investigated to identify disease-induced differences in IEC types. RESULTS: Our analysis showed that in CD patients there is a significant skew in the colonic epithelial cellular distribution away from canonical LGR5+ stem cells, located at the crypt bottom, and toward one specific subtype of mature colonocytes, located at the crypt top. Further analysis showed unique changes to gene expression programs in every major cell type, including a previously undescribed suppression in CD of most enteroendocrine driver genes as well as L-cell markers including GCG. We also dissect an incompletely understood SPIB+ cell cluster, revealing at least 4 subclusters that likely represent different stages of a maturational trajectory. One of these SPIB+ subclusters expresses crypt-top colonocyte markers and is up-regulated significantly in CD, whereas another subcluster strongly expresses and stains positive for lysozyme (albeit no other canonical Paneth cell marker), which surprisingly is greatly reduced in expression in CD. In addition, we also discovered transposable element markers of colonic epithelial cell types as well as transposable element families that are altered significantly in CD in a cell type-specific manner. Finally, through integration with data from genome-wide association studies, we show that genes implicated in CD risk show heretofore unknown cell type-specific patterns of aberrant expression in CD, providing unprecedented insight into the potential biological functions of these genes. CONCLUSIONS: Single-cell analysis shows a number of unexpected cellular and molecular features, including transposable element expression signatures, in the colonic epithelium of treatment-naïve adult CD.


Subject(s)
Crohn Disease , Adult , Crohn Disease/pathology , DNA Transposable Elements , Epithelium/pathology , Genome-Wide Association Study , Humans , Paneth Cells/metabolism , Single-Cell Analysis
13.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34643097

ABSTRACT

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Subject(s)
Cell Lineage , Epithelial Cells/metabolism , Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , MicroRNAs/genetics , Transcriptome , Animals , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Computational Biology , Dogs , Female , Flow Cytometry , Intestinal Mucosa/cytology , Intestine, Small/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Organoids , RNA-Seq , Single-Cell Analysis
14.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34283207

ABSTRACT

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine-mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2-CRTH2 pathway negatively regulates the Type 2 cytokine-driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.


Subject(s)
Cytokines/metabolism , Intestinal Mucosa/parasitology , Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Strongylida Infections/parasitology , Animals , Female , Gastroenteritis/parasitology , Gastroenteritis/pathology , Goblet Cells/pathology , Host-Parasite Interactions/physiology , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Nippostrongylus/pathogenicity , Organoids , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Strongylida Infections/pathology
15.
Int J Epidemiol ; 50(5): 1660-1670, 2021 11 10.
Article in English | MEDLINE | ID: mdl-33969390

ABSTRACT

BACKGROUND: Life-course epidemiology studies people's health over long periods, treating repeated measures of their experiences (usually risk factors) as predictors or causes of subsequent morbidity and mortality. Three hypotheses or models often guide the analyst in assessing these sequential risks: the accumulation model (all measurement occasions are equally important for predicting the outcome), the critical period model (only one occasion is important) and the sensitive periods model (a catch-all model for any other pattern of temporal dependence). METHODS: We propose a Bayesian omnibus test of these three composite models, as well as post hoc decompositions that identify their best respective sub-models. We test the approach via simulations, before presenting an empirical example that relates five sequential measurements of body weight to an RNAseq measure of colorectal-cancer disposition. RESULTS: The approach correctly identifies the life-course model under which the data were simulated. Our empirical cohort study indicated with >90% probability that colorectal-cancer disposition reflected a sensitive process, with current weight being most important but prior body weight also playing a role. CONCLUSIONS: The Bayesian methods we present allow precise inferences about the probability of life-course models given the data and are applicable in realistic scenarios involving causal analysis and missing data.


Subject(s)
Life Change Events , Models, Statistical , Bayes Theorem , Causality , Cohort Studies , Humans , Risk Factors
16.
Am J Epidemiol ; 190(8): 1533-1540, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33675221

ABSTRACT

We examined the way body-weight patterns through the first 4 decades of life relate to gene expression signatures of common forms of morbidity, including cardiovascular disease (CVD), type 2 diabetes (T2D), and inflammation. As part of wave V of the nationally representative National Longitudinal Study of Adolescent to Adult Health (1997-2018) in the United States, mRNA abundance data were collected from peripheral blood (n = 1,132). We used a Bayesian modeling strategy to examine the relative associations between body size at 5 life stages-birth, adolescence, early adulthood, young adulthood, and adulthood-and gene expression-based disease signatures. We compared life-course models that consider critical or sensitive periods, as well as accumulation over the entire period. Our results are consistent with a sensitive-period model when examining CVD and T2D gene expression signatures: Birth weight has a prominent role for the CVD and T2D signatures (explaining 33.1% and 22.1%, respectively, of the total association accounted for by body size), while the most recent adult obesity status (ages 33-39) is important for both of these gene expression signatures (24.3% and 35.1%, respectively). Body size in all life stages was associated with inflammation, consistent with the accumulation model.


Subject(s)
Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Inflammation/epidemiology , Obesity/epidemiology , Transcriptome , Adolescent , Adult , Bayes Theorem , Birth Weight , Body Mass Index , Cardiovascular Diseases/genetics , Child , Diabetes Mellitus, Type 2/genetics , Female , Humans , Infant, Newborn , Inflammation/genetics , Longitudinal Studies , Male , Obesity/genetics , RNA, Messenger , Risk Factors , Young Adult
17.
Discov Soc Sci Health ; 1(1): 1, 2021.
Article in English | MEDLINE | ID: mdl-35403123
18.
Cell Mol Gastroenterol Hepatol ; 10(4): 779-796, 2020.
Article in English | MEDLINE | ID: mdl-32561494

ABSTRACT

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) barrier dysfunction is critical to the development of Crohn's disease (CD). However, the mechanism is understudied. We recently reported increased microRNA-31-5p (miR-31-5p) expression in colonic IECs of CD patients, but downstream targets and functional consequences are unknown. METHODS: microRNA-31-5p target genes were identified by integrative analysis of RNA- and small RNA-sequencing data from colonic mucosa and confirmed by quantitative polymerase chain reaction in colonic IECs. Functional characterization of activin receptor-like kinase 1 (ACVRL1 or ALK1) in IECs was performed ex vivo using 2-dimensional cultured human primary colonic IECs. The impact of altered colonic ALK1 signaling in CD for the risk of surgery and endoscopic relapse was evaluated by a multivariate regression analysis and a Kaplan-Meier estimator. RESULTS: ALK1 was identified as a target of miR-31-5p in colonic IECs of CD patients and confirmed using a 3'-untranslated region reporter assay. Activation of ALK1 restricted the proliferation of colonic IECs in a 5-ethynyl-2-deoxyuridine proliferation assay and down-regulated the expression of stemness-related genes. Activated ALK1 signaling increased colonic IEC differentiation toward colonocytes. Down-regulated ALK1 signaling was associated with increased stemness and decreased colonocyte-specific marker expression in colonic IECs of CD patients compared with healthy controls. Activation of ALK1 enhanced epithelial barrier integrity in a transepithelial electrical resistance permeability assay. Lower colonic ALK1 expression was identified as an independent risk factor for surgery and was associated with a higher risk of endoscopic relapse in CD patients. CONCLUSIONS: Decreased colonic ALK1 disrupted colonic IEC barrier integrity and was associated with poor clinical outcomes in CD patients.


Subject(s)
Activin Receptors, Type II/analysis , Colon/pathology , Crohn Disease/pathology , Intestinal Mucosa/pathology , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Adult , Colon/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Down-Regulation , Enzyme Activation , Female , Humans , Intestinal Mucosa/metabolism , Male , MicroRNAs/genetics , Middle Aged
19.
Proc Natl Acad Sci U S A ; 117(9): 4601-4608, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32041883

ABSTRACT

Health in later life varies significantly by individual demographic characteristics such as age, sex, and race/ethnicity, as well as by social factors including socioeconomic status and geographic region. This study examined whether sociodemographic variations in the immune and inflammatory molecular underpinnings of chronic disease might emerge decades earlier in young adulthood. Using data from 1,069 young adults from the National Longitudinal Study of Adolescent to Adult Health (Add Health)-the largest nationally representative and ethnically diverse sample with peripheral blood transcriptome profiles-we analyzed variation in the expression of genes involved in inflammation and type I interferon (IFN) response as a function of individual demographic factors, sociodemographic conditions, and biobehavioral factors (smoking, drinking, and body mass index). Differential gene expression was most pronounced by sex, race/ethnicity, and body mass index (BMI), but transcriptome correlates were identified for every demographic dimension analyzed. Inflammation-related gene expression showed the most pronounced variation as a function of biobehavioral factors (BMI and smoking) whereas type I IFN-related transcripts varied most strongly as a function of individual demographic characteristics (sex and race/ethnicity). Bioinformatic analyses of transcription factor and immune-cell activation based on transcriptome-wide empirical differences identified additional effects of family poverty and geographic region. These results identify pervasive sociodemographic differences in immune-cell gene regulation that emerge by young adulthood and may help explain social disparities in the development of chronic illness and premature mortality at older ages.


Subject(s)
Economic Status , Health Status Disparities , Social Class , Transcriptome , Adolescent , Adult , Age Factors , Female , Health Behavior , Humans , Immunity/genetics , Inflammation/genetics , Interferons/genetics , Longevity , Male
20.
Cell Mol Gastroenterol Hepatol ; 9(3): 447-464, 2020.
Article in English | MEDLINE | ID: mdl-31756561

ABSTRACT

BACKGROUND & AIMS: The enteroendocrine cell (EEC) lineage is important for intestinal homeostasis. It was recently shown that EEC progenitors contribute to intestinal epithelial growth and renewal, but the underlying mechanisms remain poorly understood. MicroRNAs are under-explored along the entire EEC lineage trajectory, and comparatively little is known about their contributions to intestinal homeostasis. METHODS: We leverage unbiased sequencing and eight different mouse models and sorting methods to identify microRNAs enriched along the EEC lineage trajectory. We further characterize the functional role of EEC progenitor-enriched miRNA, miR-7, by in vivo dietary study as well as ex vivo enteroid in mice. RESULTS: First, we demonstrate that miR-7 is highly enriched across the entire EEC lineage trajectory and is the most enriched miRNA in EEC progenitors relative to Lgr5+ intestinal stem cells. Next, we show in vivo that in EEC progenitors miR-7 is dramatically suppressed under dietary conditions that favor crypt division and suppress EEC abundance. We then demonstrate by functional assays in mouse enteroids that miR-7 exerts robust control of growth, as determined by budding (proxy for crypt division), EdU and PH3 staining, and likely regulates EEC abundance also. Finally, we show by single-cell RNA sequencing analysis that miR-7 regulates Xiap in progenitor/stem cells and we demonstrate in enteroids that the effects of miR-7 on mouse enteroid growth depend in part on Xiap and Egfr signaling. CONCLUSIONS: This study demonstrates for the first time that EEC progenitor cell-enriched miR-7 is altered by dietary perturbations and that it regulates growth in enteroids via intact Xiap and Egfr signaling.


Subject(s)
Enteroendocrine Cells/physiology , Inhibitor of Apoptosis Proteins/genetics , Intestinal Mucosa/physiology , MicroRNAs/metabolism , Stem Cells/physiology , Animals , Cell Lineage/genetics , Cell Proliferation/genetics , Cells, Cultured , Computational Biology , ErbB Receptors/metabolism , Feeding Behavior/physiology , Female , Inhibitor of Apoptosis Proteins/metabolism , Intestinal Mucosa/cytology , Male , Mice , Mice, Transgenic , Models, Animal , Organoids , Primary Cell Culture , RNA-Seq , Signal Transduction/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...