Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 141: 109006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598733

ABSTRACT

Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.

2.
Fish Shellfish Immunol ; 134: 108629, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36822381

ABSTRACT

The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1ß and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.


Subject(s)
Antiviral Agents , Smegmamorpha , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Cytokines/metabolism , ErbB Receptors , Immunity , Cell Proliferation , Smegmamorpha/metabolism
3.
Front Immunol ; 14: 1327749, 2023.
Article in English | MEDLINE | ID: mdl-38173722

ABSTRACT

Viperin is a prominent antiviral protein found in animals. The primary function of Viperin is the production of 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP), an inhibitory nucleotide involved in viral RNA synthesis. Studies in mammalian models have suggested that ddhCTP interferes with metabolic proteins. However, this hypothesis has yet to be tested in teleost. In this study, the role of Viperin in regulating metabolic alterations during viral hemorrhagic septicemia virus (VHSV) infection was tested. When infected with VHSV, viperin -/- fish showed considerably higher mortality rates. VHSV copy number and the expression of the NP gene were significantly increased in viperin -/- fish. Metabolic gene analysis revealed significant differences in soda, hif1a, fasn, and acc expression, indicating their impact on metabolism. Cholesterol analysis in zebrafish larvae during VHSV infection showed significant upregulation of cholesterol production without Viperin. In vitro analysis of ZF4 cells suggested a considerable reduction in lipid production and a significant upregulation of reactive oxygen species (ROS) generation with the overexpression of viperin. Neutrophil and macrophage recruitment were significantly modulated in viperin -/- fish compared to the wild-type (WT) fish. Thus, we have demonstrated that Viperin plays a role in interfering with metabolic alterations during VHSV infection.


Subject(s)
Hemorrhagic Septicemia, Viral , Perciformes , Animals , Cholesterol , Mammals , Proteins , Zebrafish , Viperin Protein/metabolism , Zebrafish Proteins/metabolism
4.
Fish Shellfish Immunol ; 131: 672-681, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36309322

ABSTRACT

Viperin is an important virus-induced protein in animals that negatively participates in RNA viral replication and transcription. The reactive machinery of viperin suggests that it produces a regulatory molecule ddhCTP, which may affect immune regulation. In this study, we investigated the expression pattern of viperin in larval and adult stages of zebrafish by whole-mount in situ hybridization and reverse transcription-quantitative PCR (RT-qPCR). To elucidate the function of viperin, we generated a zebrafish knockout model using the CRISPR/Cas9 method and evaluated the mutation's effects under viral hemorrhagic septicemia virus (VHSV) infections. In zebrafish larvae, viperin was expressed in the brain region, eye, and pharynx, which was confirmed by cryosectioning. In adult zebrafish, blood cells showed the highest levels of viperin expression. In 5 dpf fish challenged with VHSV, the expression of the viral NP protein was significantly enhanced in viperin-/- compared to wild-type fish. In vitro VHSV propagation analysis indicated comparatively higher levels of virus propagation in viperin-/- fish. Mortality analysis confirmed higher mortality rates, and interferon gene expression analysis showed a strong upregulation of interferon (ifn)φ1 and 3 gene in viperin-/- fish infected with VHSV. This study describes the successful generation of a viperin-knockout model and the role of viperin during VHSV infections.


Subject(s)
Fish Diseases , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Animals , Zebrafish/genetics , Zebrafish/metabolism , CRISPR-Cas Systems , Novirhabdovirus/physiology , Viral Proteins/genetics , Mutation , Interferons/genetics
5.
Fish Shellfish Immunol ; 130: 206-214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36100068

ABSTRACT

Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.


Subject(s)
Fish Diseases , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Perciformes , Virus Diseases , Animals , Apoptosis Regulatory Proteins , Mammals , Novirhabdovirus/physiology , Poly I-C/pharmacology , Proto-Oncogene Proteins c-bcl-2
6.
Fish Shellfish Immunol ; 124: 289-299, 2022 May.
Article in English | MEDLINE | ID: mdl-35430349

ABSTRACT

Clusterin (CLU) is a glycoprotein that contains α- and ß-chains. CLU exerts multifunctional activities and plays a role in different cell signaling pathways that are associated with various diseases such as proteotoxic and oxidative stress, as well as cell death and survival. However, its role in marine teleost fish remains unclear. Therefore, the present study was carried out to characterize and investigate the immune responses and anti-apoptotic effects of CLU of the big-belly seahorse (Hippocampus abdominalis) (HaCLU) on oxidative stress-induced cell death. The HaCLU open reading frame was 1389 bp long and encoded a protein with 462 amino acids, a molecular weight of 51.28 kDa and an isoelectric point of 5.41. In-silico results demonstrated that HaCLU has a signal peptide in the 1-29 amino acid region, while the α- and ß-chains were in the 34-227 and 228-455 amino acid regions, respectively. Multiple sequence alignment clarified the low homology of the α-chain with other orthologs. The highest HaCLU mRNA expression level was observed in the liver, followed by the heart, spleen, and brain tissues of healthy big-belly seahorses. Further, HaCLU mRNA expression level was elevated in the liver in response to different stimuli, including lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae. HaCLU potentiates cell viability and weakens chromatin condensation in the nucleus of FHM cells following H2O2-induced oxidative stress and subsequent cell death. HaCLU overexpression resulted in a reduced Bax/Bcl-2 mRNA expression ratio. This study revealed the role of HaCLU in immune regulation against pathogenic infections and its anti-apoptotic effects on oxidative stress-induced cell death.


Subject(s)
Fish Diseases , Smegmamorpha , Amino Acids/metabolism , Animals , Clusterin/genetics , Clusterin/metabolism , Fish Proteins/chemistry , Gene Expression Regulation , Hydrogen Peroxide/metabolism , Immunity , Lipopolysaccharides/pharmacology , Phylogeny , RNA, Messenger/genetics
7.
Article in English | MEDLINE | ID: mdl-34801710

ABSTRACT

Viperin is known to exhibit activity against RNA viral infection. Viral hemorrhagic septicemia virus (VHSV) is a negative-sense single-stranded RNA virus that causes severe loss in aquaculture species. Susceptible species include redlip mullets (Liza haematocheila), which has become an economically important euryhaline mugilid species in offshore aquaculture along the west coast of Korea. Although interferon-stimulated genes are suspected to act against VHSV, specific pathways or mechanisms of these antiviral actions in redlip mullets have not yet been established. In silico studies of the mullet viperin (Lhrsad2) revealed an S-adenosyl methionine binding conserved domain containing the 77CNYKCGFC84 sequence. In the tissue distribution, the highest levels of lhrsad2 expression were observed in the blood. When injected with poly(I:C), an approximately 17-fold upregulation (compared to the control) of viperin was detected in the blood after 24 h. Furthermore, non-viral immune stimuli, including Lactococcus garvieae (L. garvieae) and lipopolysaccharide (LPS), that were injected into redlip mullets were not found to induce considerable levels of viperin expression. Subcellular analysis revealed that Lhrsad2 localized to the endoplasmic reticulum (ER). To investigate Lhrsad2's antiviral effects against VHSV, cells overexpressing lhrsad2 were infected with VHSV, and then the viral titer and viral gene expression were analyzed. Both assays revealed the potential of Lhrsad2 to significantly reduce VHSV transcription and replication. In brief, the current study illustrates the remarkable ability of viperin to weaken VHSV in redlip mullet.


Subject(s)
Novirhabdovirus , Smegmamorpha , Animals , Antiviral Agents/pharmacology , Fish Proteins , Immunity, Innate
8.
Fish Shellfish Immunol ; 118: 219-227, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34509626

ABSTRACT

Remedies toward sustainable aquaculture rely upon research that unveils the molecular mechanisms behind host immunity and their interactions with pathogens. Antiviral defense is a major innate immune response in fish. The antiviral protein GCHV-induced gene-2 (Gig2), a member of the interferon-stimulated gene (ISG), was identified and characterized from rockfish (Sebastes schlegelii). Gig2 exists in two isoforms, namely, SsGig2-I1 and SsGig2-I2, in rockfish with lengths of 163 and 223 bp, respectively. Bioinformatic analysis indicated the availability of poly (ADP-ribose) polymerase domain in both proteins, and 51.3% identity and 71.3% similarity between both isoforms were observed. The basal expression pattern revealed the highest tissue-specific expression in rockfish gills for both isoforms. The immune challenge experiment disclosed a distinctive and strong expression of each transcript in the presence of poly I:C. Both isoforms are localized in the endoplasmic reticulum. Interferon (IFN) pathway gene analysis revealed no significant upregulation of IFN related genes. Viral hemorrhagic septicemia virus (VHSV) gene expression analysis revealed strong downregulation of viral transcripts after 48 h of infection in the presence of Gig2 isoforms. Collectively, these results indicate the protective role of Gig2 in rockfish against VHSV infection and help broaden our understanding of the innate immunity of fish.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Novirhabdovirus , Perciformes , Poly(ADP-ribose) Polymerases , Rhabdoviridae Infections , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/chemistry , Interferons/immunology , Isoenzymes/chemistry , Novirhabdovirus/immunology , Perciformes/immunology , Perciformes/virology , Poly(ADP-ribose) Polymerases/chemistry , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology
9.
Front Physiol ; 12: 685595, 2021.
Article in English | MEDLINE | ID: mdl-34290620

ABSTRACT

Loss of L-gulonolactone oxidase (GULO), which catalyzes the last step of the ascorbic acid (AA) biosynthesis pathway, results in a complete lack of AA in several Osteichthyes fish species, including zebrafish. In this study, sGULO, the active GULO gene from cloudy catshark (Scyliorhinus torazame) was cloned into zebrafish using the Gateway cloning method. The resulting Tg(b-actin:sGULO:mCherry) fish were analyzed for the effects of a reestablished AA pathway. Fluorescent microscopy and PCR were used to analyze the integration of the construct into the zebrafish genome. Catalytic activity of sGULO, AA production, growth-related characteristics, and gene expression were investigated to evaluate the effects of AA production in Tg fish. The mCherry fluorescent protein indicated the proper integration and expression of the sGULO construct in zebrafish. The sGULO gene was ubiquitously expressed in all the studied tissues and the enzyme activity indicated an increased AA production in Tg fish. The growth of Tg fish was also increased, and antioxidant system analysis suggests that reactive oxygen species production was reduced in Tg fish compared with wild type. Expression of the AA transporter slc23a1 was significantly downregulated in Tg homozygous fish. These results collectively indicate the effects of reestablished AA synthesis in zebrafish.

10.
Fish Shellfish Immunol ; 108: 14-23, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33259930

ABSTRACT

Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.


Subject(s)
Fish Diseases/immunology , Fishes/genetics , Fishes/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Repressor Proteins/genetics , Repressor Proteins/immunology , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , NF-kappa B/metabolism , Phylogeny , Repressor Proteins/chemistry , Sequence Alignment/veterinary , Transcriptome
11.
Fish Shellfish Immunol ; 106: 410-420, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805417

ABSTRACT

Calreticulin (CRT) is a multifunctional ubiquitous protein that is widely presented in all cells in eukaryotes except erythrocytes. CRT is well known for diverse cellular functions such as endoplasmic reticulum (ER)-specialized protein quality control during protein synthesis and folding, in-vivo Ca2+ homeostasis, antigen presentation, phagocytosis, wound-healing, proliferation, adhesion, and migration of cells. In the current study, we identified CRT from Hippocampus abdominalis (HaCRT) and analyzed expression profiles and functional properties. The cDNA sequence of HaCRT was identified with an open reading frame of 1226 bp. The molecular weight of HaCRT was estimated as 49 kDa. The in-silico study revealed conserved sequence arrangements such as two CRT signature motifs (5'-KHEQSIDCGGGYVKVF-3' and 5'-LMFGPDICG-3'), triplicate repeats (5'-IKDPEAKKPEDWD-3', 5'-IPDPDDTKPEDWD-3', 5'-IPDPDAKKPDDWD-3'), signal peptide and an ER-targeting 5'-KDEL-3' sequence of HaCRT. Close sequence similarity of HaCRT was observed with Hippocampus comes from phylogenetic analysis and pairwise sequence comparison. From quantitative polymerase chain reaction (qPCR) results, HaCRT was ubiquitously distributed in all tested tissues and expression levels of HaCRT were significantly modulated in blood, liver and gill tissues after stimulation with Streptococcus iniae, Edwardsiella tarda, polyinosinic:polycytidylic acid, and lipopolysaccharides. Bacterial- and pathogen-associated molecular patterns-binding activities were observed with recombinant HaCRT (rHaCRT). The treatment of murine macrophages with rHaCRT induced the expression of immune genes, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and interleukin-1ß (IL-1ß). Furthermore, rHaCRT exhibited wound-healing ability. Based on the results from the above study, we suggest that HaCRT play an indispensable role in the immunity of big-belly seahorses by recognition and elimination of pathogens as well as the tissue repairing process.


Subject(s)
Calreticulin/genetics , Calreticulin/immunology , Fish Proteins/genetics , Smegmamorpha/genetics , Smegmamorpha/immunology , Amino Acid Sequence , Animals , Calreticulin/chemistry , Fish Proteins/chemistry , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Phylogeny
12.
Fish Shellfish Immunol ; 99: 483-494, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32087279

ABSTRACT

Malectin is a carbohydrate-binding lectin protein found in the endoplasmic reticulum (ER). It selectivity binds to Glc2-N-glycan and is involved in a glycoprotein quality control mechanism. Even though malectin may play a role in immunity, its role in innate immunity is not fully known. In the present study, we identified and characterized the malectin gene from Hippocampus abdominalis (HaMLEC). We analyzed sequence features, spatial expression levels, temporal expression profiles upon immune responses, bacterial and carbohydrate binding abilities and anti-viral properties to investigate the potential role of HaMLEC in innate immunity. The molecular weight and isoelectric point (pI) were estimated to be 31.99 kDa and 5.17, respectively. The N-terminal signal peptide, malectin superfamily domain and C-terminal transmembrane region were identified from the amino acid sequence of HaMLEC. The close evolutionary relationship of HaMLEC with other teleosts was identified by phylogenetic analysis. According to quantitative PCR (qPCR) results, HaMLEC expression was observed in all the examined tissues and high expression was observed in the ovary and brain, compared to other tested tissues. Temporal expression of HaMLEC in liver and blood tissues were significant modulated upon exposure to immunogens Edwardasiella tarda, Streptococcus iniae, polyinosinic:polycytidylic and lipopolysaccharide. The presence of carbohydrate binding modules (CBMs) of bacterial glycosyl hydrolases were functionally confirmed by a bacterial binding assay. Anti-viral activity significantly reduced viral hemorrhagic septicemia virus (VHSV) replication in cells overexpressing HaMLEC. The observed results suggested that HaMLEC may have a significant role in innate immunity in Hippocampus abdominalis.


Subject(s)
Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate , Lectins/genetics , Lectins/immunology , Smegmamorpha/genetics , Animals , Antiviral Agents , Cell Line , Cloning, Molecular , Cyprinidae , Edwardsiella tarda/immunology , Female , Fish Diseases/immunology , Gene Expression , Lipopolysaccharides/immunology , Male , Phylogeny , Poly I-C/immunology , Smegmamorpha/immunology , Streptococcus iniae/immunology
13.
Fish Shellfish Immunol ; 99: 59-72, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32006686

ABSTRACT

Innate immunity is characterized by nonspecific, prompt reactions toward armada of antigens. Animals funnel down a repertoire of immune stimulants to activate non-selective defense mechanisms rapidly. This study was conducted to characterize the rockfish (Sebastes schlegelii) adaptor protein MyD88 (SsMyD88), which interacts with both toll-like receptors and interleukin receptors. The tissue expression of unchallenged SsMyD88 was evaluated by quantitative real time PCR (qPCR). Fish were intraperitoneally injected with immune stimulants including poly I:C, lipopolysaccharides, and Streptococcus iniae. Then, the temporal expression of SsMyD88 was analyzed. Finally, the inflammatory gene expression and downstream promoter activation were analyzed. Strongest expressions were reported in the liver, gills and spleen in unchallenged conditions. All diverse immune stimulants were found to be capable of significantly altering SsMyD88 transcription during the challenge experiment. Evaluation of downstream promoter biases by SsMyD88 found a predominant activation of NF-ĸB transcription factors when compared with the AP-1, revealing significant and substantial upregulation of major inflammatory mediators such as IL-1-ß, IL-6, iNOS, COX-2 and TNF-α. Fluorescent detection confirmed an intense production of NO and the predominant differentiation of macrophages into M1 lineage with the overexpression of SsMyD88 in vitro. These results further corroborate the role of SsMyD88 as a mediatory molecule that bridges distinct immune stimulants to induce drastic immune responses in fish.


Subject(s)
Cytokines/genetics , Fish Proteins/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/genetics , Perciformes/genetics , Animals , Cytokines/immunology , Fish Proteins/immunology , Gene Expression , HEK293 Cells , Humans , Immunity, Innate , Inflammation , Lipopolysaccharides , Macrophages/immunology , Mice , NF-kappa B/immunology , Perciformes/immunology , Poly I-C , RAW 264.7 Cells , Streptococcus iniae
14.
Fish Shellfish Immunol ; 92: 655-666, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252045

ABSTRACT

Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (SsVip), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl l-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed SsVip expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, SsVip was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of SsVip was detected in the blood following Streptococcus iniae and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fishes , Gene Expression Profiling/veterinary , Hemorrhagic Septicemia, Viral/immunology , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Lipopolysaccharides/pharmacology , Novirhabdovirus/physiology , Phylogeny , Poly I-C/pharmacology , Sequence Alignment/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus iniae/physiology
15.
Virusdisease ; 29(1): 27-31, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29607355

ABSTRACT

Human papilloma virus (HPV) causes cervical cancer in women and approximately 700 deaths have been reported annually in Sri Lanka due to this cancer. Despite, attempts have not been made to investigate the prevalence of HPV amongst Sri Lankan women with normal cytology. In this study, a polymerase chain reaction based assay was set up to detect HPV in both normal and abnormal cytology and the positive samples were then tested for the genotypes, HPV 16 and HPV 18 as they have been identified as the high-risk types associating with cervical cancer. Eighty-four (number = 84) clinical samples (age range 27-69) analyzed in this study indicated that the prevalence of HPV, regardless of cytological abnormalities was 15.5%, (n = 13, 95% class interval ± 7.7) while it was 100% (n = 3) for those with abnormal cytology. Association of HPV 16 and HPV 18 among the abnormal cytology was 0 and 50% (n = 1), respectively and further, the prevalence of HPV 16 and HPV 18 in women was found to be 3.6% (n = 3, 95% CI ± 4.0) and 2.4% (n = 2, 95% CI ± 3.3), respectively. Moreover, age wise prevalence analysis revealed women of the age of 35-years or more to have higher HPV prevalence. The prevalence of HPV among normal cytology is 12.3% (n = 10, 95% CI ± 7.2) which is similar to the rates in other regions of Asia (China 15.4%; India 10.43%). Finally, higher prevalence of HPV in women of the age of 35-years or more in Sri Lanka, especially with malignant types call for such age group to be screened for proper clinical intervention to be made in reducing the incident of cervical cancers. This is the first report of prevalence of HPV among women with normal cytology in Sri Lanka.

SELECTION OF CITATIONS
SEARCH DETAIL
...