Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 342: 85-90, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37714385

ABSTRACT

BACKGROUND: Transcutaneous cervical vagus nerve stimulation (tcVNS) has emerged as a potential treatment strategy for patients with stress-related psychiatric disorders. Ghrelin is a hormone that has been postulated to be a biomarker of stress. While the mechanisms of action of tcVNS are unclear, we hypothesized that tcVNS reduces the levels of ghrelin in response to stress. METHODS: Using a randomized double-blind approach, we studied the effects of tcVNS on ghrelin levels in individuals with a history of exposure to traumatic stress. Participants received either sham (n = 29) or active tcVNS (n = 26) after exposure to acute personalized traumatic script stress and mental stress challenges (public speech, mental arithmetic) over a three day period. RESULTS: There were no significant differences in the levels of ghrelin between the tcVNS and sham stimulation groups at either baseline or in the absence of trauma scripts. However, tcVNS in conjunction with personalized traumatic scripts resulted in lower ghrelin levels compared to the sham stimulation group (265.2 ± 143.6 pg/ml vs 478.7 ± 349.2 pg/ml, P = 0.01). Additionally, after completing the public speaking and mental arithmetic tests, ghrelin levels were found to be lower in the group receiving tcVNS compared to the sham group (293.3 ± 102.4 pg/ml vs 540.3 ± 203.9 pg/ml, P = 0.009). LIMITATIONS: Timing of ghrelin measurements, and stimulation of only left vagus nerve. CONCLUSION: tcVNS decreases ghrelin levels in response to various stressful stimuli. These findings are consistent with a growing literature that tcVNS modulates hormonal and autonomic responses to stress.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Ghrelin , Vagus Nerve Stimulation/methods , Vagus Nerve/physiology , Autonomic Nervous System , Transcutaneous Electric Nerve Stimulation/methods , Psychophysiologic Disorders
2.
Psychosom Med ; 83(9): 969-977, 2021.
Article in English | MEDLINE | ID: mdl-34292205

ABSTRACT

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a disabling condition affecting a large segment of the population; however, current treatment options have limitations. New interventions that target the neurobiological alterations underlying symptoms of PTSD could be highly beneficial. Transcutaneous cervical (neck) vagal nerve stimulation (tcVNS) has the potential to represent such an intervention. The goal of this study was to determine the effects of tcVNS on neural responses to reminders of traumatic stress in PTSD. METHODS: Twenty-two participants were randomized to receive either sham (n = 11) or active (n = 11) tcVNS stimulation in conjunction with exposure to neutral and personalized traumatic stress scripts with high-resolution positron emission tomography scanning with radiolabeled water for brain blood flow measurements. RESULTS: Compared with sham, tcVNS increased brain activations during trauma scripts (p < .005) within the bilateral frontal and temporal lobes, left hippocampus, posterior cingulate, and anterior cingulate (dorsal and pregenual), and right postcentral gyrus. Greater deactivations (p < .005) with tcVNS were observed within the bilateral frontal and parietal lobes and left thalamus. Compared with tcVNS, sham elicited greater activations (p < .005) in the bilateral frontal lobe, left precentral gyrus, precuneus, and thalamus, and right temporal and parietal lobes, hippocampus, insula, and posterior cingulate. Greater (p < .005) deactivations were observed with sham in the right temporal lobe, posterior cingulate, hippocampus, left anterior cingulate, and bilateral cerebellum. CONCLUSIONS: tcVNS increased anterior cingulate and hippocampus activation during trauma scripts, potentially indicating a reversal of neurobiological changes with PTSD consistent with improved autonomic control.Trial Registration: No. NCT02992899.


Subject(s)
Stress Disorders, Post-Traumatic , Vagus Nerve Stimulation , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/therapy , Vagus Nerve Stimulation/methods
3.
Neurobiol Stress ; 13: 100264, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344717

ABSTRACT

OBJECTIVE: Exacerbated autonomic responses to acute stress are prevalent in posttraumatic stress disorder (PTSD). The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to acute stress in patients with PTSD. The authors hypothesized tcVNS would reduce the sympathetic response to stress compared to a sham device. METHODS: Using a randomized double-blind approach, we studied the effects of tcVNS on physiological responses to stress in patients with PTSD (n = 25) using noninvasive sensing modalities. Participants received either sham (n = 12) or active tcVNS (n = 13) after exposure to acute personalized traumatic script stress and mental stress (public speech, mental arithmetic) over a three-day protocol. Physiological parameters related to sympathetic responses to stress were investigated. RESULTS: Relative to sham, tcVNS paired to traumatic script stress decreased sympathetic function as measured by: decreased heart rate (adjusted ß = -5.7%; 95% CI: ±3.6%, effect size d = 0.43, p < 0.01), increased photoplethysmogram amplitude (peripheral vasodilation) (30.8%; ±28%, 0.29, p < 0.05), and increased pulse arrival time (vascular function) (6.3%; ±1.9%, 0.57, p < 0.0001). Similar (p < 0.05) autonomic, cardiovascular, and vascular effects were observed when tcVNS was applied after mental stress or without acute stress. CONCLUSION: tcVNS attenuates sympathetic arousal associated with stress related to traumatic memories as well as mental stress in patients with PTSD, with effects persisting throughout multiple traumatic stress and stimulation testing days. These findings show that tcVNS has beneficial effects on the underlying neurophysiology of PTSD. Such autonomic metrics may also be evaluated in daily life settings in tandem with tcVNS therapy to provide closed-loop delivery and measure efficacy.ClinicalTrials.gov Registration # NCT02992899.

4.
Brain Stimul ; 13(5): 1333-1348, 2020.
Article in English | MEDLINE | ID: mdl-32659483

ABSTRACT

BACKGROUND: Traumatic stress can have lasting effects on neurobiology and result in psychiatric conditions such as posttraumatic stress disorder (PTSD). We hypothesize that non-invasive cervical vagal nerve stimulation (nVNS) may alleviate trauma symptoms by reducing stress sympathetic reactivity. This study examined how nVNS alters neural responses to personalized traumatic scripts. METHODS: Nineteen participants who had experienced trauma but did not have the diagnosis of PTSD completed this double-blind sham-controlled study. In three sequential time blocks, personalized traumatic scripts were presented to participants immediately followed by either sham stimulation (n = 8; 0-14 V, 0.2 Hz, pulse width = 5s) or active nVNS (n = 11; 0-30 V, 25 Hz, pulse width = 40 ms). Brain activity during traumatic scripts was assessed using High Resolution Positron Emission Tomography (HR-PET) with radiolabeled water to measure brain blood flow. RESULTS: Traumatic scripts resulted in significant activations within the bilateral medial and orbital prefrontal cortex, premotor cortex, anterior cingulate, thalamus, insula, hippocampus, right amygdala, and right putamen. Greater activation was observed during sham stimulation compared to nVNS within the bilateral prefrontal and orbitofrontal cortex, premotor cortex, temporal lobe, parahippocampal gyrus, insula, and left anterior cingulate. During the first exposure to the trauma scripts, greater activations were found in the motor cortices and ventral visual stream whereas prefrontal cortex and anterior cingulate activations were more predominant with later script presentations for those subjects receiving sham stimulation. CONCLUSION: nVNS decreases neural reactivity to an emotional stressor in limbic and other brain areas involved in stress, with changes over repeated exposures suggesting a shift from scene appraisal to cognitively processing the emotional event.


Subject(s)
Brain/metabolism , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/therapy , Vagus Nerve Stimulation/methods , Adult , Brain Mapping/methods , Double-Blind Method , Emotions/physiology , Female , Humans , Male , Positron-Emission Tomography/methods , Stress Disorders, Post-Traumatic/psychology , Young Adult
5.
Brain Stimul ; 13(1): 47-59, 2020.
Article in English | MEDLINE | ID: mdl-31439323

ABSTRACT

BACKGROUND: Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. OBJECTIVE: The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. METHODS: Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. RESULTS: tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6-6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4-94.5%, p < 0.05), a 9% decrease in respiratory rate (-14.3 to -3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. CONCLUSION: Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.


Subject(s)
Heart Rate/physiology , Respiratory Rate/physiology , Stress, Psychological/therapy , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve Stimulation/methods , Vagus Nerve/physiology , Adolescent , Adult , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Young Adult
6.
Front Physiol ; 10: 1057, 2019.
Article in English | MEDLINE | ID: mdl-31507437

ABSTRACT

Cardiac time intervals are important hemodynamic indices and provide information about left ventricular performance. Phonocardiography (PCG), impedance cardiography (ICG), and recently, seismocardiography (SCG) have been unobtrusive methods of choice for detection of cardiac time intervals and have potentials to be integrated into wearable devices. The main purpose of this study was to investigate the accuracy and precision of beat-to-beat extraction of cardiac timings from the PCG, ICG and SCG recordings in comparison to multimodal echocardiography (Doppler, TDI, and M-mode) as the gold clinical standard. Recordings were obtained from 86 healthy adults and in total 2,120 cardiac cycles were analyzed. For estimation of the pre-ejection period (PEP), 43% of ICG annotations fell in the corresponding echocardiography ranges while this was 86% for SCG. For estimation of the total systolic time (TST), these numbers were 43, 80, and 90% for ICG, PCG, and SCG, respectively. In summary, SCG and PCG signals provided an acceptable accuracy and precision in estimating cardiac timings, as compared to ICG.

7.
Article in English | MEDLINE | ID: mdl-37113478

ABSTRACT

Transcutaneous vagus nerve stimulation (t-VNS) is a promising technology for modulating brain function and possibly treating disorders of the central nervous system. While handheld devices are available for t-VNS, stimulation efficacy can only be quantified using expensive imaging or blood biomarker analyses. Additionally, the parameters and "dosage" recommendations for t-VNS are typically fixed, as there are limited biomarkers that can assess downstream effects of the stimulation outside of clinical settings. In this proof-of-concept study, we evaluated non-invasive peripheral cardiovascular measurements as physiological biomarkers of t-VNS efficacy. Specifically, we hypothesized two physiological biomarkers: (1) the pre-ejection period (PEP) of the heart - a parameter closely linked to sympathetic tone - and (2) the amplitude of peripheral photoplethysmogram (PPG) waveforms - representing changes in vasomotor tone and thus parasympathetic / sympathetic activation. A total of six healthy human subjects participated in the multi-day study, half each undergoing active or sham t-VNS stimulus. The three subjects receiving t-VNS had no decrease in PEP and an increase in PPG amplitude following t-VNS, while the subjects receiving sham stimulus had a decrease in PEP and no change in PPG amplitude. When combined with mental stress (a traumatic script being read back to the subjects), the group with t-VNS had no decrease in PEP and only a slight decrease in PPG amplitude following stimulus, while the group receiving sham stimulus had a decrease in PEP and also a slight decrease in PPG amplitude. These studies suggest that PEP and PPG amplitude measures may provide non-invasive physiological biomarkers of t-VNS efficacy, including in the presence of mental stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...