Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Environ Pollut ; 257: 113556, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31796311

ABSTRACT

The effects of warming and elevated ozone (O3) concentrations on nitrous oxide (N2O) emission from cropland has received increasing attention; however, the small number of studies on this topic impedes understanding. A field experiment was performed to explore the role of warming and elevated O3 concentrations on N2O emission from wheat-soybean rotation cropland from 2012 to 2013 using open-top chambers (OTCs). Experimental treatments included ambient temperature (control), elevated temperature (+2 °C), elevated O3 (100 ppb), and combined elevated temperature (+2 °C) and O3 (100 ppb). Results demonstrate that warming significantly increased the accumulative amount of N2O (AAN) emitted from the soil-winter wheat system due to enhanced nitrification rates in the wheat farmland and nitrate reductase activity in wheat leaves. However, elevated O3 concentrations significantly decreased AAN emission from the soil-soybean system owing to reduced nitrification rates in the soybean farmland. The combined treatment of warming and elevated O3 inhibited the emission of N2O from the soybean farmland. Additionally, both the warming and combined treatments significantly increased soil nitrification rates in winter wheat and soybean croplands and decreased denitrification rates in the winter wheat cropping system. Our results suggest that global warming and elevated O3 concentrations will strongly affect N2O emission from wheat-soybean rotation croplands.


Subject(s)
Agriculture/methods , Global Warming , Glycine max/physiology , Nitrogen Dioxide/toxicity , Ozone/toxicity , Triticum/physiology , Crops, Agricultural , Denitrification , Fabaceae , Nitrification/drug effects , Nitrification/physiology , Nitrogen Cycle/drug effects , Nitrogen Cycle/physiology , Nitrous Oxide/analysis , Ozone/analysis , Poaceae , Rotation , Seasons , Soil
2.
Article in English | MEDLINE | ID: mdl-31108948

ABSTRACT

A deeper understanding of the effects of experimental warming and elevated ozone (O3) concentration on carbon dioxide (CO2) fluxes is imperative for reducing potential CO2 emissions in agroecosystems, but are less understood particularly in rotational wheat (Triticum aestivum)-soybean (Glycine max) croplands. In order to understand such effects on CO2 fluxes from winter wheat-soybean rotation, a field experiment was conducted by using the open-top chamber (OTCs) during the growing seasons of 2012 and 2013 at an agro-ecological station in southeast China. The experimental treatments included the control (CK), experimental warming (T, crop canopy temperature increased by ~2 °C), elevated O3 concentration (O, O3 concentration about 100 ppb) along with temperature enhancement (OT, elevated ~2 °C temperature plus 100 ppb O3). The results showed that warming significantly increased the mean CO2 fluxes (MCF) and the cumulative amount of CO2 (CAC) from soil and soil-crop systems, while elevated O3 and warming enhancement (OT) significantly reduced MCF and CAC. Besides, warming significantly reduced the biomass of winter-wheat, but it insignificantly decreased the biomass of soybean in the harvest period. The O and OT treatments significantly reduced the biomass of winter-wheat and soybean cropping systems in the harvest time. Both warming and elevated O3 concentration decreased the temperature sensitivity coefficients (Q10) in soil respiration during the experimental period. Overall, our results indicate that elevated O3 concentration compensates the effect of warming on CO2 emission to some extents, which has a positive feedback impact on the climate system.


Subject(s)
Agriculture/methods , Carbon Dioxide/chemistry , Climate Change , Glycine max , Triticum , China , Ozone/analysis , Seasons , Soil , Temperature
3.
Environ Pollut ; 251: 185-192, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31078090

ABSTRACT

Agriculture is one of major emission sources of nitrous oxide (N2O), an important greenhouse gas dominating stratospheric ozone destruction. However, indirect N2O emissions from agriculture watershed water surfaces are poorly understood. Here, surface-dissolved N2O concentration in water bodies of the agricultural watershed in Eastern China, one of the most intensive agricultural regions, was measured over a two-year period. Results showed that the dissolved N2O concentrations varied in samples taken from different water types, and the annual mean N2O concentrations for rivers, ponds, reservoir, and ditches were 30 ±â€¯18, 19 ±â€¯7, 16 ±â€¯5 and 58 ±â€¯69 nmol L-1, respectively. The N2O concentrations can be best predicted by the NO3--N concentrations in rivers and by the NH4+-N concentrations in ponds. Heavy precipitation induced hot moments of riverine N2O emissions were observed during farming season. Upstream waters are hot spots, in which the N2O production rates were two times greater than in non-hotspot locations. The modeled watershed indirect N2O emission rates were comparable to direct emission from fertilized soil. A rough estimate suggests that indirect N2O emissions yield approximately 4% of the total N2O emissions yield from N-fertilizer at the watershed scale. Separate emission factors (EF) established for rivers, ponds, and reservoir were 0.0013, 0.0020, and 0.0012, respectively, indicating that the IPCC (Inter-governmental Panel on Climate Change) default value of 0.0025 may overestimate the indirect N2O emission from surface water in eastern China. EF was inversely correlated with N loading, highlighting the potential constraints in the IPCC methodology for water with a high anthropogenic N input.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Nitrous Oxide/analysis , Agriculture/methods , China , Fertilizers , Rivers , Seasons , Soil
4.
Huan Jing Ke Xue ; 39(11): 5227-5236, 2018 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-30628248

ABSTRACT

In order to identify methane (CH4) diffusion emissions characteristics and their impact factors in an eutrophic lake, CH4 flux across the lake-air interface was observed in Meiliang Bay and the central zone of Lake Taihu over one year. The relationships between CH4 flux and environmental factors and water quality indices were analyzed. The results indicated that the annual mean CH4 diffusion flux in the eutrophic zone was significantly higher than that in the central zone, which were 0.140 mmol·(m2·d)-1 and 0.024 mmol·(m2·d)-1, respectively. Additionally, the highest CH4 flux appeared in the eutrophic littoral zone. The CH4 flux varied seasonally, which was consistent with water temperature that peaked in summer. Furthermore, the difference in CH4 flux between seasons was an order of magnitude. The temporal variation in CH4 flux was mostly driven by wind speed and water temperature. The spatial correlation between CH4 flux and dissolved organic carbon concentration was highly significant (R2=0.62, P<0.01). Observing temporal and spatial patterns of CH4 flux was necessary to accurately estimate whole-lake CH4 emissions due to large variability across time and space.


Subject(s)
Eutrophication , Lakes , Methane/analysis , China , Seasons , Temperature , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...