Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Pharmacother ; 165: 115113, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37418974

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases with limited treatment options. Moreover, its prevalence is doubled in type 2 diabetes mellitus (T2DM). Kaempferol (KAP) is a flavonoid compound that has been suggested to have beneficial effects on NAFLD, but studies on the mechanism are lacking, especially in the diabetic state. Herein, we investigated the effect of KAP on NAFLD associated with T2DM and its underlying mechanism in vitro and in vivo. The results of in vitro studies indicated that KAP treatment (10-8-10-6 M) significantly reduced lipid accumulation in oleic acid-induced HepG2 cells. Moreover, in the T2DM animal model of db/db mice, we confirmed that KAP (50 mg/kg) significantly reduced lipid accumulation and improved liver injury. Mechanistic studies in vitro and in vivo showed that Sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) signal was involved in KAP regulation of hepatic lipid accumulation. KAP treatment activated Sirt1 and AMPK, upregulated the levels of fatty acid oxidation-related protein proliferator activated receptor gamma coactivator 1α (PGC1α); and downregulated lipid synthesis-related proteins, including acetyl-coA carboxylase (ACC), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBP1). Furthermore, the curative effect of KAP on lipid accumulation was abolished by siRNA-mediated knockdown of either Sirt1 or AMPK. Collectively, these findings suggest that KAP may be a potential therapeutic agent for NAFLD associated with T2DM by regulating hepatic lipid accumulation through activation of Sirt1/AMPK signaling.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Liver , Signal Transduction , Lipid Metabolism , Hep G2 Cells , Lipids/pharmacology , Mice, Inbred C57BL
2.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36536184

ABSTRACT

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Mice , Female , Male , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Streptozocin/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Sex Characteristics , Mice, Inbred C57BL , Skin/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Membrane Glycoproteins/metabolism
3.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557826

ABSTRACT

The urotensin receptor (UT receptor), a G-protein-coupled receptor mediating urotensin-II and urotensin-II-related peptide signaling in the urotensinergic system, has multiple pharmacological activities. However, there is no drug targeting the UT receptor currently in clinical use, and the discovery of new leads is still important. The complete crystal structure of the UT receptor has not yet been resolved and a screening strategy combining multiple methods can improve the accuracy and efficiency of drug screening. This study aimed to identify novel UT receptor agonists using a combination of docking-based, pharmacophore-based, and cell-based drug screening. First, the three-dimensional structures of the UT receptor were constructed through single-template, multi-template homologous modeling and threading strategies. After structure evaluation and ligand enrichment analysis, a model from the threading modeling was selected for docking-based virtual screening based on stepwise filtering, and 1368 positive compounds were obtained from our compound library. Second, the pharmacophore models were constructed using known ligands targeting the UT receptor for pharmacophore-based virtual screening. A model was selected after model validation, and 300 positive compounds were retrieved. Then, after intersecting the results of two different virtual screening methods with 570 compound entities from our primary screening, 14 compounds were obtained. Finally, three hits were obtained after in vitro confirmation. Furthermore, preliminary evaluation of the hits showed that they influenced glucose consumption. In summary, by integrating docking-based, pharmacophore-based, and in vitro drug screening, three new agonists targeting the UT receptor were identified which may serve as promising therapeutic agents for urotensinergic system disorders.


Subject(s)
Pharmacophore , Urotensins , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Ligands , Molecular Docking Simulation
4.
Pharmacol Res ; 185: 106468, 2022 11.
Article in English | MEDLINE | ID: mdl-36167277

ABSTRACT

Urotensin receptor (UT) is a G-protein-coupled receptor, whose endogenous ligand is urotensin-II (U-II). Skeletal muscle mass is regulated by various conditions, such as nutritional status, exercise, and diseases. Previous studies have pointed out that the urotensinergic system is involved in skeletal muscle metabolism and function, but its mechanism remains unclear, especially given the lack of research on the effect and mechanism of fasting. In this study, UT receptor knockout mice were generated to evaluate whether UT has effects on fasting induced skeletal muscle atrophy. Furthermore, the UT antagonist palosuran (3, 10, 30 mg/kg) was intraperitoneally administered daily for 5 days to clarify the therapeutic effect of UT antagonism. Our results found the mice that fasted for 48 h exhibited skeletal muscle atrophy, accompanied by enhanced U-II levels in both skeletal muscles and blood. UT receptor knockout effectively prevented fasting-induced skeletal muscle atrophy. The UT antagonist ameliorated fasting-induced muscle atrophy in mice as determined by increased muscle strengths, weights, and muscle fiber areas (including fast, slow, and mixed types). In addition, the UT antagonist reduced skeletal muscle atrophic markers, including F-box only protein 32 (FBXO32) and tripartite motif containing 63 (TRIM63). Moreover, the UT antagonist was also observed to enhance PI3K/AKT/mTOR while inhibiting autophagy signaling. In summary, our study provides the first evidence that UT antagonism may represent a novel therapeutic approach for the treatment of fasting-induced skeletal muscle atrophy.


Subject(s)
Muscle, Skeletal , Muscular Atrophy , Receptors, G-Protein-Coupled , Urotensins , Animals , Mice , Fasting , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Urotensins/metabolism
6.
Front Immunol ; 12: 624725, 2021.
Article in English | MEDLINE | ID: mdl-34084160

ABSTRACT

MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.


Subject(s)
MicroRNAs/immunology , Neoplasms/immunology , Tumor Escape , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/therapeutic use , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Progression , Humans , Immunotherapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Phenotype , Tumor Escape/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL