Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 179(2): 337-352, 2022 01.
Article in English | MEDLINE | ID: mdl-34784647

ABSTRACT

BACKGROUND AND PURPOSE: Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. EXPERIMENTAL APPROACH: Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. KEY RESULTS: Apically applied RGal (1000 µg ml-1 ) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCδ and PKCζ. CONCLUSION AND IMPLICATIONS: RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signalling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.


Subject(s)
Intestinal Mucosa , Rhamnogalacturonans , Toll-Like Receptor 4 , Caco-2 Cells , Dietary Fiber/pharmacology , Epithelial Cells/metabolism , Humans , Intestinal Mucosa/metabolism , Microbiota , Permeability , Rhamnogalacturonans/pharmacology , Tight Junctions/metabolism , Toll-Like Receptor 4/metabolism
2.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G990-G1001, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33826403

ABSTRACT

Proinflammatory macrophages are essential drivers of colitis and express the growth factor receptor ErbB4. This study tested the role of ErbB4 and its specific ligand, NRG4, in regulating macrophage function. We show that endogenous NRG4-ErbB4 signaling limits macrophage production of proinflammatory cytokines in vitro and limits colitis severity in vivo and thus is a potential target for therapeutic intervention.


Subject(s)
Inflammation/metabolism , Macrophages/metabolism , Neuregulins/metabolism , Receptor, ErbB-4/metabolism , Signal Transduction/physiology , Animals , Colitis/metabolism , Colon/metabolism , Cytokines/metabolism , Inflammation/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophage Activation/physiology , Mice , Mice, Knockout
3.
PLoS One ; 12(7): e0180259, 2017.
Article in English | MEDLINE | ID: mdl-28671992

ABSTRACT

Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.


Subject(s)
Intestinal Mucosa/physiology , Serine Proteases/metabolism , Signal Transduction , ADAM17 Protein/metabolism , Animals , Catalysis , Cell Line , Dogs , ErbB Receptors/metabolism , Matrix Metalloproteinases/metabolism , Proteolysis
4.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G466-79, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27492333

ABSTRACT

Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.


Subject(s)
Epithelial Cells/enzymology , Intestinal Mucosa/cytology , Occludin/metabolism , Tight Junctions/physiology , Animals , Cell Line , Dogs , Electric Impedance , Electrophysiological Phenomena , Epithelial Cells/cytology , Epithelial Cells/physiology , Occludin/genetics , Protein Transport , Serine Endopeptidases/pharmacology , Serine Proteases , Tight Junction Proteins/metabolism , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...