Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Open Life Sci ; 19(1): 20220930, 2024.
Article in English | MEDLINE | ID: mdl-39310811

ABSTRACT

This study aimed to investigate the expression and clinical significance of syncytin-1 in the serum exosomes of hepatocellular carcinoma (HCC) patients. Serum samples were collected from 61 patients with newly diagnosed HCC and 61 healthy individuals. Exosomes were extracted from serum samples and identified using transmission electron microscopy and Western blot. The relative expression levels of syncytin-1 in exosomes were determined by real-time quantitative PCR. The protein expression levels of alpha-fetoprotein and syncytin-1 in HCC patients were detected using enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed to evaluate the sensitivity and specificity of serum exosomal syncytin-1 in diagnosing HCC. The relationships between syncytin-1 expression and clinical pathological features were analyzed using receiver operating characteristic curve analysis. The results showed that the expression level of syncytin-1 in the serum of patients with newly diagnosed HCC was significantly higher than that in the normal control group (P < 0.0001). Using pathological diagnosis as the gold standard, the sensitivity and specificity of syncytin-1 for the auxiliary diagnosis of HCC were 91.3% and 75.5%, respectively, which were significantly higher than those of alpha-fetoprotein (P < 0.0001). The relative expression level of serum exosomal syncytin-1 was significantly associated with lymph node metastasis, degree of differentiation, and CNLC staging of HCC patients (P < 0.05). In conclusion, syncytin-1 in serum exosomes has high sensitivity and specificity for diagnosing HCC and can serve as a novel tumor marker for early screening, detection, and staging of HCC.

2.
Ecol Evol ; 14(9): e70315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39318533

ABSTRACT

Studies have shown that the microbiome of saline-tolerant plants plays a significant role in promoting salt stress in non-saline-tolerant plants, but the microorganisms are still unclear. In the present study, the microbial diversity changes in Suaeda salsa (L.) Pall. in the Yellow River Delta region were investigated. In the bacterial community, the dominant bacteria in the rhizosphere soil of the low-saline soil (YDL), moderate-saline soil (YDM), and high-saline soil (YDH) groups were Proteobacteria, Chloroflexi, Bacteroidota, and Actinobacteriota (at the phylum level), while Ascomycota and Basidiomycota were the dominant fungi in the fungal community. At the family level, with the increase of salinity, the relative abundance of Rhodobacteraceae (bacterial community), Thermoascaceae, and Phaffomycetaceae (fungal community) gradually increased; and to the best of our knowledge, there are no reports on the relationship between Thermoascaceae and Phaffomycetaceae families with salt stress. At the genus level, Salinimicrobium (bacterial community) was the dominant bacterium in the rhizosphere soil of the YDL, YDM, and YDH groups, while with the increase of salinity, the relative abundance of Byssochlamys and Wickerhamomyces (fungal community) gradually increased, and to the best of our knowledge there are no reports on the relationship between Byssochlamys and salt stress. Salinity mainly affected the bacterial community abundance, but it had little effect on the fungi community abundance. The bacterial community of the YDH group was dominated by bacteria of unknown origin (52.76%), while bacteria of unknown origin accounted for 26.46% and 20.78% of the bacterial communities in the YDM and YDL groups, respectively. The fungi community of the YDH group was dominated by YDL group fungi (relative abundance of 44.44%), followed by YDM group fungi (29.42%) and fungi of unknown origin (26.14%). These results provide a better understanding of the rhizosphere microbial diversity of saline-alkali-tolerant plants, laying a foundation for developing a saline-alkali-tolerant plant microbiome.

3.
BMJ Open ; 14(8): e078165, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142670

ABSTRACT

BACKGROUND: While the guidelines acknowledge the anticipated benefits of using an implantable cardioverter defibrillator (ICD) in individuals with catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the potential adverse effects have received less attention. METHODS AND ANALYSIS: To address this issue comprehensively, we will explore various databases such as the Cochrane Library, Web of Science, EMBASE and PubMed. Our study will include CPVT patients, both with and without ICD implantation. Two researchers will evaluate the eligible studies independently and gather pertinent data. The quality of the studies included will be assessed using either the Newcastle-Ottawa Scale or the Cochrane Risk of Bias Tool. Data analysis will be conducted using RevMan. ETHICS AND DISSEMINATION: Because this research depends exclusively on existing studies, obtaining patient informed consent and ethics approval is unnecessary. The results of this meta-analysis will be shared at conferences or in peer-reviewed journals. PROSPERO REGISTRATION NUMBER: CRD42022370824.


Subject(s)
Defibrillators, Implantable , Tachycardia, Ventricular , Humans , Research Design , Tachycardia, Ventricular/therapy , Meta-Analysis as Topic , Systematic Reviews as Topic
4.
Anatol J Cardiol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011831

ABSTRACT

BACKGROUND: Gap junction remodeling is an important cause of ventricular arrhythmia in heart failure. However, it remains unclear whether renal denervation (RDN) regulates gap junction remodeling in heart failure. To explore the effect of RDN on gap junction remodeling in dogs with high-pacing-induced heart failure. METHODS: Fifteen dogs were randomly divided into control (n = 5), heart failure (HF) (n = 5), and RDN+HF (n = 5) group. A high-pacing-induced-heart failure model was established using rapid right ventricular pacing for 4 weeks. The RDN+HF group underwent surgical and chemical ablation of both renal arteries before 4 weeks rapid right ventricular pacing. After 4 weeks, echocardiography, High-Performance Liquid Chromatography-Mass Spectrometry test for norepinephrine and epinephrine, and pathological analysis were performed in the above 3 groups. Further, immunohistochemical staining was used to detect tyrosine hydroxylase, ChaT, connexin 43 (Cx43), and connexin 40 (Cx40). Connexin 43 and Cx40 expression was detected by western blotting. Transmission electron microscopy was used to observe the gap junction. RESULTS: Compared to the control group, myocardial fibrosis and sympathetic hyperactivity were observed in the HF group. Immunohistochemical staining and western blotting showed that Cx40 expression and Cx43 expression was significantly reduced in the HF group. Compared with the HF group, the RDN+HF group showed reduced sympathetic hyperactivity, Cx40 expression, Cx40/Cx43 ratio, and increased Cx43 expression. CONCLUSION: Renal denervation alleviates gap junction remodeling in high-pacing-induced heart failure dogs.

5.
Front Microbiol ; 15: 1373597, 2024.
Article in English | MEDLINE | ID: mdl-38841055

ABSTRACT

Shiraia bambusicola is a typical parasitic medicinal fungus of the family Shiraiaceae. The fruiting bodies of S. bambusicola cannot be cultivated artificially, and active substances can be effectively produced via fermentation. The mechanism of conidia production is a research hotspot in the industrial utilization and growth development of S. bambusicola. This study is the first to systematically study the proteomics of conidiospore formation from S. bambusicola. Near-spherical conidia were observed and identified by internal transcribed spacer (ITS) sequence detection. A total of 2,840 proteins were identified and 1,976 proteins were quantified in the mycelia and conidia of S. bambusicola. Compared with mycelia, 445 proteins were differentially expressed in the conidia of S. bambusicola, with 165 proteins being upregulated and 280 proteins being downregulated. The Gene Ontology (GO) annotation results of differential proteomics showed that the biological process of S. bambusicola sporulation is complex. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the differential proteins were mainly involved in starch and sucrose metabolism, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and other processes. Our in-depth speculative analysis showed that proteins related to carbohydrate metabolism were differentially expressed in conidiospore formation of S. bambusicola, suggesting the involvement of saccharides. Conidiation may increase the synthesis and release of ethanol and polysaccharide proteins such as glycoside hydrolase (GH), suppress host immunity, and facilitate S. bambusicola to infect and colonize of the host. In-depth analysis of differential proteomes will help reveal the molecular mechanism underlying the conidiospore formation of S. bambusicola, which has strong theoretical and practical significance.

6.
Pediatr Surg Int ; 40(1): 108, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619672

ABSTRACT

PURPOSE: Variability in necrosis patterns and operative techniques in surgical necrotizing enterocolitis (NEC) necessitates a standardized classification system for consistent assessment and comparison. This study introduces a novel intraoperative reporting system for surgical NEC, focusing on reliability and reproducibility. METHODS: Analyzing surgical NEC cases from January 2018 to June 2023 at two tertiary neonatal and pediatric surgery units, a new classification system incorporating anatomical details and intestinal involvement extent was developed. Its reproducibility was quantified using kappa coefficients (κ) for interobserver and intraobserver reliability, assessed by four specialists. Furthermore, following surgery, the occurrence of mortality and enteric autonomy were evaluated on the basis of surgical decision-making of the novel intraoperative classification system for surgical NEC. RESULTS: In total, 95 patients with surgical NEC were included in this analysis. The mean κ value of the intra-observer reliability was 0.889 (range, 0.790-0.941) for the new classification, indicating excellent agreement and the inter-observer reliability was 0.806 (range, 0.718-0.883), indicating substantial agreement. CONCLUSION: The introduced classification system for surgical NEC shows high reliability, deepening the understanding of NEC's intraoperative exploration aspects. It promises to indicate operative strategies, enhance prognosis prediction, and substantially facilitate scholarly communication in pediatric surgery. Importantly, it explores the potential for a standardized report and may represent a step forward in classifying surgical NEC, if pediatric surgeons are open to change.


Subject(s)
Enterocolitis, Necrotizing , Specialties, Surgical , Child , Humans , Infant, Newborn , Laparotomy , Reproducibility of Results , Enterocolitis, Necrotizing/surgery , Necrosis
7.
Pediatr Surg Int ; 40(1): 41, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286871

ABSTRACT

PURPOSE: Surgical necrotizing enterocolitis (NEC) is a severe medical condition that, even after surgery, a portion of the survival infants may still have neurological sequelae. The objective of this study was to identify the risk factors associated with the development of permanent neurodevelopmental impairment (NDI) in neonates with surgical NEC. METHODS: Between January 2016 and June 2022, a retrospective data collection was conducted on 98 individuals who experienced surgical NEC with gestational age ≥ 28 weeks. Among these patients, 27 patients were diagnosed with NDI, while the remaining 71 patients did not have NDI. Based on this division, the patients were categorized into the NDI group and the Non-NDI group. Demographics, comorbidities, and admission lab results were analyzed using univariate and logistic regression analyses. RESULTS: Of the 98 neonates following surgical NEC, 27(27.6%) developed permanent neurodevelopmental impairment (NDI). Predictors of NDI were identified through the final multivariable logistic regression analysis, which revealed that gestational age ≤ 32 weeks (p = 0.032; odds ratio [OR], 5.673), assisted mechanical ventilation after NEC onset (p = 0.047; OR, 5.299), postoperative acute kidney injury (p = 0.040; OR, 5.106), CRP day 3 after NEC onset (p = 0.049; OR, 1.037), time from presentation to surgery (p = 0.003; OR, 1.047) were significant risk factors. CONCLUSIONS: Our study identified gestational age ≤ 32 weeks, assisted mechanical ventilation after NEC onset, postoperative acute kidney injury, CRP day 3 after NEC onset, and time from presentation to surgery as significant risk factors for NDI in neonates with surgical NEC. These factors would be helpful to refine treatment modalities for better disease outcomes. We also determined the cut-off values of CRP day 3 after NEC onset and time from presentation to surgery, allowing for the individualized evaluation of NDI risk and the implementation of earlier targeted laparotomy.


Subject(s)
Acute Kidney Injury , Enterocolitis, Necrotizing , Fetal Diseases , Infant, Newborn, Diseases , Infant , Female , Infant, Newborn , Humans , Retrospective Studies , Gestational Age , Enterocolitis, Necrotizing/epidemiology , Enterocolitis, Necrotizing/surgery , Risk Factors
8.
Mar Environ Res ; 195: 106375, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266548

ABSTRACT

Haemocytes are crucial for the immune defence of mollusks. It is important to explore the immune performance of haemocytes of mollusks under the stress of heavy metals with global warming. In order to study the effects of cadmium (Cd) exposure and temperature stress on the haemocyte immune function of clam Ruditapes philippinarum, clams were exposed to different Cd concentrations (0.05, 0.10 and 0.25 mg/L) at 20 °C, 25 °C and 30 °C respectively. Haemocyte mortality, reactive oxygen species (ROS) and superoxide dismutase (SOD) activity were measured at day 1, day 3, day 5 and day 7. The results showed that the changes of the three indexes were not obvious when exposed to 0.05 mg/L of Cd at 20 °C, while significant differences were observed with the increase of temperature, Cd concentration and exposure time. Under a condition of relative high temperature coupling with high concentration of Cd, the clams were significantly influenced, showing an obvious synergistic effect. Selected indexes reflect the clam's response to the combined stress of temperature and Cd. Moreover, R. philippinarum might be an ideal biological index species to the Cd pollution.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Temperature , Bivalvia/physiology , Seafood , Immunity , Water Pollutants, Chemical/analysis
9.
BMC Cardiovasc Disord ; 24(1): 10, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166609

ABSTRACT

BACKGROUND: Leadless pacemakers are a recent technological advancement. It has many advantages, but there are still a few serious complications. CASE PRESENTATION: This article reports the case of a patient with an endocardial tear and dissection caused by contact with the tip of the Micra cup during surgery and summarises the relevant data. CONCLUSIONS: This case report details the occurrence and management of the incident and provides some guidance for future clinical management.


Subject(s)
Pacemaker, Artificial , Humans , Treatment Outcome , Equipment Design
10.
Small ; 20(13): e2307030, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37964299

ABSTRACT

Structural damage of Ni-rich layered oxide cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) and serious interfacial side reactions and physical contact failures with sulfide electrolytes (SEs) are the main obstacles restricting ≥4.6 V high-voltage cyclability of all-solid-state lithium batteries (ASSLBs). To tackle this constraint, here, a modified NCM811 with Li3PO4 coating and B/P co-doping using inexpensive BPO4 as raw materials via the one-step in situ synthesis process is presented. Phosphates have good electrochemical stability and contain the same anion (O2-) and cation (P5+) as in cathode and SEs, respectively, thus Li3PO4 coating precludes interfacial anion exchange, lessening side reactivity. Based on the high bond energy of B─O and P─O, the lattice O and crystal texture of NCM811 can be stabilized by B3+/P5+ co-doping, thereby suppressing microcracks during high-voltage cycling. Therefore, when tested in combination with Li─In anode and Li6PS5Cl solid electrolytes (LPSCl), the modified NCM811 exhibits extraordinary performance, with 200.36 mAh g-1 initial discharge capacity (4.6 V), cycling 2300 cycles with decay rate as low as 0.01% per cycle (1C), and 208.26 mAh g-1 initial discharge capacity (4.8 V), cycling 1986 cycles with 0.02% per cycle decay rate. Simultaneously, it also has remarkable electrochemical abilities at both -20 °C and 60 °C.

13.
Biochem Biophys Res Commun ; 687: 149210, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37931419

ABSTRACT

Parkinson's disease is presently thought to have its molecular roots in the alteration of PINK1-mediated mitophagy and mitochondrial dynamics. Finding new suppressors of the pathway is essential for developing cutting-edge treatment approaches. Our study shows that FUNDC1 suppressed PINK1 mutant phenotypes in Drosophila. The restoration of PINK1-deficient phenotypes through FUNDC1 is not reliant on its LC3-binding motif Y (18)L (21) or autophagy-related pathway. Moreover, the absence of Drp1 affects the phenotypic restoration of PINK1 mediated by FUNDC1 in flies. In summary, our findings have unveiled a fresh mechanism through which FUNDC1 compensates for the loss of PINK1, operating independently of autophagy but exerting its influence via interaction with Drp1.


Subject(s)
Drosophila Proteins , Mitochondrial Dynamics , Animals , Mitochondrial Dynamics/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mitophagy/genetics , Autophagy/genetics , Drosophila/genetics , Drosophila/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Drosophila Proteins/genetics
14.
Anatol J Cardiol ; 27(8): 462-471, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37288855

ABSTRACT

BACKGROUND: While desmosomal junctions and gap junction remodeling are among the arrhythmogenic substrates, the fate of desmosomal and gap junctions in high-pacing-induced heart failure remains unclear. This aim of this study was to determine the fate of desmosomal junctions in high-pacing-induced heart failure. METHODS: Dogs were randomly divided into 2 equal groups, a high-pacing-induced heart failure model group (heart failure group, n = 6) and a sham operation group (control group, n = 6). Echocardiography and cardiac electrophysiological examination were performed. Cardiac tissue was analyzed by immunofluorescence and transmission electron microscopy. The expression of desmoplakin and desmoglein-2 proteins was detected by western blot. RESULTS: A significant decrease in ejection fraction, significant cardiac dilatation, diastolic and systolic dysfunction, and ventricular thinning occurred after 4 weeks in high-pacing-induced dog model of heart failure. Effective refractory period action potential duration at 90% repolarization was prolonged in the heart failure group. Immunofluorescence analysis and transmission electron microscopy demonstrated connexin-43 lateralization accompanies desmoglein-2 and desmoplakin remodeling in the heart failure group. Western blotting showed that the expression of desmoplakin and desmoglein-2 proteins was higher in heart failure than in normal tissue. CONCLUSION: Desmosome (desmoglein-2 and desmoplakin) redistribution and desmosome (desmoglein-2) overexpression accompanying connexin-43 lateralization were parts of a complex remodeling in high-pacing-induced heart failure.


Subject(s)
Heart Failure , Dogs , Animals , Desmoplakins , Heart , Arrhythmias, Cardiac , Desmogleins , Cardiac Pacing, Artificial
15.
Plants (Basel) ; 12(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37050062

ABSTRACT

Seagrass is a significant primary producer of coastal ecosystems; however, the continued degradation of seagrass beds is a serious problem that has attracted widespread attention from researchers. Rhizosphere microorganisms affect seagrass and participate in many life activities of seagrass. This study explored the relationship between the composition of microbes in the rhizosphere and the surrounding environment of Ruppia sinensis by using High-throughput sequencing methods. The dominant bacterial groups in the rhizosphere surface sediments of R. sinensis and the surrounding environment are Proteobacteria, Bacteroidota, and Firmicutes. Moreover, the dominant fungal groups are Ascomycota, Basidiomycota, and Chytridiomycota. Significant differences (p < 0.05) were identified in microbial communities among different groups (rhizosphere, bulk sediment, and surrounding seawater). Seventy-four ASVs (For bacteria) and 48 ASVs (For fungal) were shared among seagrass rhizosphere, surrounding sediment, and seawater. The rhizosphere was enriched in sulfate-reducing bacteria and nitrogen-fixing bacteria. In general, we obtained the rhizosphere microbial community of R. sinensis, which provided extensive evidence of the relative contribution of the seagrass rhizosphere and the surrounding environment.

16.
Front Med (Lausanne) ; 10: 1132823, 2023.
Article in English | MEDLINE | ID: mdl-37056729

ABSTRACT

Background: Increasing numbers of studies demonstrated that picosecond lasers (Picos) were effective and safe for melasma. However, A limited number of randomized controlled trials (RCTs) regarding Picos contribute to a modest level of evidence. Topical hydroquinone (HQ) remains to be the first-line therapy. Objective: To compare the efficacy and safety of non-fractional picosecond Nd:YAG laser (PSNYL), non-fractional picosecond alexandrite laser (PSAL), and 2% HQ cream in the treatment of melasma. Method: Sixty melasma patients with Fitzpatrick skin types (FST) III-IV were randomly assigned to the PSNY, PSAL, and HQ groups at a 1:1:1 ratio. Patients in PSNYL and PSAL groups received 3 laser sessions at 4-week intervals. The 2% HQ cream was applied twice daily for 12 weeks in patients of the HQ group. The primary outcome, the melasma area and severity index (MASI) score, was evaluated at weeks 0, 4, 8, 12, 16, 20, and 24. The patient assessment score by quartile rating scale was rated at weeks 12, 16, 20, and 24. Results: Fifty-nine (98.3%) subjects were included in the analysis. Each group showed significant change from baseline in MASI scores from week 4 to week 24. The MASI score in the PSNYL group showed the greatest reduction compared to the PSAL group (p = 0.016) and HQ group (p = 0.018). The PSAL group demonstrated comparable MASI improvement as the HQ group (p = 0.998). The PSNYL group had the highest patient assessment score, followed by the PSAL group and then the HQ group, although only the differences between PSNYL and HQ groups at weeks 12 and 16 were significant. Four patients (6.8%) experienced recurrence. Other unanticipated events were transient and subsided after 1 week to 6 months. Conclusion: The efficacy of non-fractional PSNYL was superior to that of non-fractional PSAL, which was not inferior to 2% HQ, thus non-fractional Picos providing an alternative for melasma patients with FSTs III-IV. The safety profiles of PSNYL, PSAL, and 2% HQ cream were similar. Clinical Trial Registration: https://www.chictr.org.cn/showprojen.aspx?proj=130994, ChiCTR2100050089.

17.
Front Plant Sci ; 14: 1130292, 2023.
Article in English | MEDLINE | ID: mdl-36968358

ABSTRACT

Seed development is a crucial phase in the life cycle of seed-propagated plants. As the only group of angiosperms that evolved from terrestrial plants to complete their life cycle submerged in marine environments, the mechanisms underlying seed development in seagrasses are still largely unknown. In the present study, we attempted to combine transcriptomic, metabolomic, and physiological data to comprehensively analyze the molecular mechanism that regulates energy metabolism in Zostera marina seeds at the four major developmental stages. Our results demonstrated that seed metabolism was reprogrammed with significant alteration of starch and sucrose metabolism, glycolysis, the tricarboxylic acid cycle (TCA cycle), and the pentose phosphate pathway during the transition from seed formation to seedling establishment. The interconversion of starch and sugar provided energy storage substances in mature seeds and further acted as energy sources to support seed germination and seedling growth. The glycolysis pathway was active during Z. marina germination and seedling establishment, which provided pyruvate for TCA cycle by decomposing soluble sugar. Notably, the biological processes of glycolysis were severely inhibited during Z. marina seed maturation may have a positive effect on seed germination, maintaining a low level of metabolic activity during seed maturation to preserve seed viability. Increased acetyl-CoA and ATP contents were accompanied with the higher TCA cycle activity during seed germination and seedling establishment, indicating that the accumulations of precursor and intermediates metabolite that can strengthen the TCA cycle and facilitate energy supply for Z. marina seed germination and seedling growth. The large amount of oxidatively generated sugar phosphate promotes fructose 1,6-bisphosphate synthesis to feed back to glycolysis during seed germination, indicating that the pentose phosphate pathway not only provides energy for germination, but also complements the glycolytic pathway. Collectively, our findings suggest these energy metabolism pathways cooperate with each other in the process of seed transformation from maturity to seedling establishment, transforming seed from storage tissue to highly active metabolic tissue to meet the energy requirement seed development. These findings provide insights into the roles of the energy metabolism pathway in the complete developmental process of Z. marina seeds from different perspectives, which could facilitate habitat restoration of Z. marina meadows via seeds.

18.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814193

ABSTRACT

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Subject(s)
Alismatales , Genome, Chloroplast , Hydrocharitaceae , Zosteraceae , Phylogeny , Alismatales/genetics , Zosteraceae/genetics , Hydrocharitaceae/genetics , Chloroplasts/genetics , Genomics , Evolution, Molecular
19.
Int J Biol Macromol ; 225: 767-775, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36403776

ABSTRACT

With global warming, high-temperature stress has become an essential abiotic factor affecting plant growth and survival. However, little knowledge was available of the molecular mechanism that aquatic plants respond to this stress. In the present study, we explore the adaptation mechanism of Spirodela polyrhiza, a surface-water-grown duckweed species broadly distributed worldwide to high temperatures, and analyze its gene expression pattern of S. polyrhiza under heat stress. Three temperature stress treatments, including room temperature group (CK), middle high-temperature group (MTS), and high-temperature group (45 °C, HTS) were set. The results showed that the contents of SOD first increased and then decreased, and those of MDA showed an upward trend under elevated high-temperature stress. According to the transcriptome data, 3145, 3487, and 3089 differently expressed genes (DEGs) were identified between MTS and CK, HTS and CK, and HTS and MTS, respectively. The transcription factors (TFs) analysis showed that 14 deferentially expressed TFs, including HSF, ERF, WRKY, and GRAS family, were responsive to heat stress, suggesting they might play vital roles in improving resistance to heat stress. In conclusion, S. polyrhiza could resist high temperatures by increasing SOD activity and MDA at the physiological level. Several transcription factors, energy accumulation processes, and cell membranes were involved in high-temperature stress at the molecular level. Our findings are helpful in better grasping the adaptation rules of some aquatic plants to high temperatures.


Subject(s)
Araceae , Gene Expression Profiling , Plants/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Araceae/genetics , Heat-Shock Response/genetics , Transcription Factors/genetics , Gene Expression Regulation, Plant
20.
Immunol Med ; 46(1): 32-44, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36237117

ABSTRACT

Atopic dermatitis (AD) is a chronic, inflammatory skin disease. The mechanism was complex. Genetic mutations of Toll-like receptor (TLR) may be associated with AD, yet still unclear. We aim to provide specific evidence of the association of TLR2, TLR9 gene polymorphisms with AD. Publications were selected according to the criteria. Newcastle-Ottawa Scale was applied to evaluate the quality. The value of ORs and 95%CIs were applied to measure the associations. According to the heterogeneity, the effects model of fixed or random was selected in data combination. For TLR2 gene rs5743708 polymorphism, under allele and recessive contrasts, the pooled data showed a significant correlation, which was A vs a, OR = 0.51 (95%CI: 0.30, 0.86); AA vs Aa + aa, OR = 0.54 (95%CI: 0.33, 0.88). For TLR2 gene rs4696480 polymorphism, under allele, homozygous, heterozygous, and dominant contrasts, the pooled data showed a significant correlation, which was A vs a, OR = 0.79 (95%CI: 0.64, 0.97), AA vs aa, OR = 0.65 (95%CI: 0.43, 0.97), Aa vs aa, OR = 0.68 (95%CI: 0.48, 0.97), AA + Aa vs aa, OR = 0.67 (95%CI: 0.49, 0.93). There are significant associations of TLR2 gene rs5743708, rs4696480 polymorphisms with atopic dermatitis, while no associations are found in TLR9 gene rs5743836, rs187084 polymorphisms.


Subject(s)
Dermatitis, Atopic , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/genetics , Toll-Like Receptor 9/genetics , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL