Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091408

ABSTRACT

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Gemcitabine , Drug Resistance, Neoplasm , Serine/metabolism , Biosynthetic Pathways , Cell Line, Tumor , RNA-Binding Proteins/metabolism , Isocitrate Dehydrogenase/metabolism
2.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996458

ABSTRACT

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Subject(s)
Colorectal Neoplasms , Macrophages , Humans , Macrophages/metabolism , Immunotherapy , CD8-Positive T-Lymphocytes , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism
3.
Front Pharmacol ; 14: 1118017, 2023.
Article in English | MEDLINE | ID: mdl-37124193

ABSTRACT

Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure.

4.
Signal Transduct Target Ther ; 7(1): 396, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36577755

ABSTRACT

Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.


Subject(s)
Acyltransferases , Proteins , Acyltransferases/genetics , Acyltransferases/metabolism , Acylation , Proteins/genetics , Protein Processing, Post-Translational
6.
Sci Transl Med ; 14(626): eabf0992, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34985967

ABSTRACT

High CD8+ T cell infiltration in colorectal cancer (CRC) should suggest a favorable prognosis and a satisfactory response to immunotherapy; however, the vast majority of patients with CRC do not benefit from immunotherapy due to poor T cell infiltration. Therefore, a better understanding of the mechanisms for T cell exclusion from CRC tumors is needed. Tribbles homolog 3 (TRIB3) has been implicated as an oncoprotein, but its role in regulating antitumor immune responses has not been defined. Here, we demonstrated that TRIB3 inhibits CD8+ T cell infiltration in various CRC mouse models. We showed that TRIB3 was acetylated by acetyltransferase P300, which inhibited ubiquitination and subsequent proteasomal degradation of TRIB3. Ectopically expressed TRIB3 inhibited signal transducer and activator of transcription 1 (STAT1) activation and STAT1-mediated CXCL10 transcription by enhancing the epidermal growth factor receptor signaling pathway, causing a reduction in tumor-infiltrating T cells. Genetic ablation of Trib3 or pharmacological acceleration of TRIB3 degradation with a P300 inhibitor increased T cell recruitment and sensitized CRCs to immune checkpoint blockade therapy. These findings identified TRIB3 as a negative modulator of CD8+ T cell infiltration in CRCs, highlighting a potential therapeutic target for treating immunologically "cold" CRCs.


Subject(s)
Cell Cycle Proteins , Colorectal Neoplasms , Immune Evasion , Protein Serine-Threonine Kinases , Repressor Proteins , Animals , CD8-Positive T-Lymphocytes , Cell Cycle Proteins/metabolism , Chemokine CXCL10/metabolism , Colorectal Neoplasms/pathology , Humans , Immunotherapy , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction
7.
Cancer Innov ; 1(1): 92-113, 2022 Jun.
Article in English | MEDLINE | ID: mdl-38089453

ABSTRACT

Ferroptosis is a newly discovered form of cell death that is characterized by the accumulation of iron-dependent lipid peroxidation. Research on ferroptosis has seen exponential growth over the past few years. Tumor cells are strongly dependent on iron for their growth, which makes them develop mechanisms to increase iron uptake and inhibit iron output, thereby completing iron accumulation. Ferroptosis can be induced or inhibited by various stresses through multiple mechanisms, making it stands at the crossroads of stresses related cancer cell fate determination. In this review, we give a brief summary of ferroptosis hallmarks and provide a systematic analysis of the current molecular mechanisms and regulatory networks of diverse stress conditions on ferroptosis. We also discuss the relationships between ferroptosis and cancer therapy responses to further understand potential targets and therapeutic strategies for cancer treatment.

8.
Sensors (Basel) ; 23(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616750

ABSTRACT

Indoor 3D positioning is useful in multistory buildings, such as shopping malls, libraries, and airports. This study focuses on indoor 3D positioning using wireless access points (AP) in an environment without adding additional hardware facilities in large-scale complex places. The integration of a deep learning algorithm into indoor 3D positioning is studied, and a 3D dynamic positioning model based on temporal fingerprints is proposed. In contrast to the traditional positioning models with a single input, the proposed method uses a sliding time window to build a temporal fingerprint chip as the input of the positioning model to provide abundant information for positioning. Temporal information can be used to distinguish locations with similar fingerprint vectors and to improve the accuracy and robustness of positioning. Moreover, deep learning has been applied for the automatic extraction of spatiotemporal features. A temporal convolutional network (TCN) feature extractor is proposed in this paper, which adopts a causal convolution mechanism, dilated convolution mechanism, and residual connection mechanism and is not limited by the size of the convolution kernel. It is capable of learning hidden information and spatiotemporal relationships from the input features and the extracted spatiotemporal features are connected with a deep neural network (DNN) regressor to fit the complex nonlinear mapping relationship between the features and position coordinates to estimate the 3D position coordinates of the target. Finally, an open-source public dataset was used to verify the performance of the localization algorithm. Experimental results demonstrated the effectiveness of the proposed positioning model and a comparison between the proposed model and existing models proved that the proposed model can provide more accurate three-dimensional position coordinates.


Subject(s)
Algorithms , Neural Networks, Computer
10.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34407391

ABSTRACT

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Subject(s)
Chemokine CCL1/metabolism , Fibroblasts/metabolism , Membrane Proteins/metabolism , Myofibroblasts/metabolism , Phosphoproteins/metabolism , Pulmonary Fibrosis/metabolism , Receptors, Autocrine Motility Factor/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation/physiology , Fibroblasts/pathology , Humans , Mice , Myofibroblasts/pathology , Pulmonary Fibrosis/pathology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL