Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 801: 137164, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36868396

ABSTRACT

AIM: We aimed to study the influence of sevoflurane on the nucleotide-binding domain and Leucine-rich repeat protein 3 (NLRP3) pathways in rats with cerebral ischemia/reperfusion (I/R) injury. METHODS: Sixty Sprague-Dawley rats were equally divided into five groups randomly: sham-operated, cerebral I/R, sevoflurane (Sevo), NLRP3 inhibitor-treated (MCC950), and sevoflurane and NLRP3 inducer-treated groups. Rats' neurological functions were assessed using Longa scoring after 24 h of reperfusion, after which they were sacrificed, and cerebral infarction area was determined by triphenyl tetrazolium chloride staining. Pathological changes in damaged portions were assessed using hematoxylin-eosin and Nissl staining, and cell apoptosis was detected by terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Interleukin 1 beta (IL-1ß), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), malondialdehyde (MDA), and superoxide dismutase (SOD) levels in brain tissues were determined using enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) levels were analyzed using a ROS assay kit. Protein levels of NLRP3, caspase-1, and IL-1ß were determined by western blot. RESULTS: Neurological function scores, cerebral infarction areas, and neuronal apoptosis index were decreased in the Sevo and MCC950 groups than in the I/R group. IL-1ß, TNF-α, IL-6, IL-18, NLRP3, caspase-1, and IL-1ß levels decreased in the Sevo and MCC950 groups (p < 0.05). ROS and MDA levels increased, but SOD levels increased in the Sevo and MCC950 groups than in the I/R group. NLPR3-inducer nigericin eliminated the protective effects of sevoflurane on cerebral I/R injury in rats. CONCLUSION: Sevoflurane could alleviate cerebral I/R-induced brain damage by inhibiting the ROS-NLRP3 pathway.


Subject(s)
Brain Ischemia , Reperfusion Injury , Rats , Animals , Sevoflurane/pharmacology , Rats, Sprague-Dawley , Interleukin-18 , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Brain Ischemia/drug therapy , Reperfusion Injury/metabolism , Caspase 1/metabolism , Cerebral Infarction/drug therapy , Reperfusion , Superoxide Dismutase
2.
Luminescence ; 37(1): 51-57, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34610201

ABSTRACT

Here, to elucidate the interaction mechanism and physicochemical properties of remimazolam and human serum albumin interactions, techniques such as fluorescence, circular dichroism (CD) spectroscopy, and isothermal titration calorimetry have been applied for study. The thermodynamic parameters at body temperature (ΔS = -207 J·mol-1 ·K-1 , ΔS = -9.76 × 104 J·mol-1 and ΔG = -3.34 × 104 J·mol-1 ; 310 K) manifests one strong binding site on the protein, which was modulated by van der Waals forces and hydrogen bonds. What is more, the results of CD, synchronous and three-dimensional fluorescence showed that remimazolam altered the microenvironment of the protein amino acid residues. A distance of 2.1 nm between the remimazolam and Trp shows the potential for resonance energy transfer. Furthermore, these results potentially provide information for illustrating the pharmacodynamics and toxicodynamics of remimazolam when it is applied clinically.


Subject(s)
Benzenesulfonates , Benzodiazepines , Serum Albumin, Human , Benzenesulfonates/chemistry , Benzodiazepines/chemistry , Binding Sites , Circular Dichroism , Humans , Protein Binding , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Thermodynamics
3.
Exp Ther Med ; 21(5): 469, 2021 May.
Article in English | MEDLINE | ID: mdl-33767764

ABSTRACT

The aim of the present study was to investigate the effect of exposure to sevoflurane general anesthesia during early pregnancy on interferon-inducible protein AIM2 (AIM2) expression in the hippocampus and parietal cortex of the offspring Sprague-Dawley (SD) rats. A total of 18 SD rats at a gestational age of 5-7 days were randomly divided into three groups: i) A control group (control); ii) 2-h sevoflurane general anesthesia, group 1 (S1); and iii) 4-h sevoflurane general anesthesia, group 2 (S2). The six offspring rats in each group were maintained for 30 days and assessed by Morris water maze testing. Brain specimens were collected from offspring rats 30 days after birth. Changes in the structural morphology of neurons in the hippocampus and parietal cortex were observed using hematoxylin and eosin staining. Nissl bodies in the hippocampus and parietal cortex were observed by Nissl staining. The expression of glial fibrillary acidic protein (GFAP), AIM2, CD45 and IL-1ß was detected by immunohistochemistry and the protein levels of CD45, IL-1ß, pro-caspase-1 and caspase-1 p10 were detected by western blotting. Compared with the control group, offspring rats in the S1 and S2 groups exhibited poor long-term learning and memory ability and experienced different degrees of damage to both the hippocampus and parietal cortex. The expression levels of GFAP, AIM2, CD45, IL-1ß, caspase-1 and caspase-1 p10 in the offspring of both the S1 and the S2 groups were significantly increased (P<0.05) compared with offspring of the control group. Moreover, compared with the offspring of the S1 group, hippocampal and parietal cortex injury in the offspring of the S2 group was further aggravated, and the expression of GFAP, AIM2, CD45, IL-1ß, pro-caspase-1 and cleaved-caspase-1 was significantly increased (P<0.05). In conclusion, sevoflurane general anesthesia in SD rat early pregnancy promoted the expression of AIM2 and the inflammatory response in the hippocampus and parietal cortex of offspring rats.

4.
J Biochem Mol Toxicol ; 28(10): 433-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24939449

ABSTRACT

Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three-dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern-Volmer quenching constants K(SV) and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 10(4) M(-1) at 298 K. It can be seen from far-UV CD spectra that the α-helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA.


Subject(s)
Isoxazoles/chemistry , Serum Albumin/chemistry , Binding Sites , Circular Dichroism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Isoxazoles/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Serum Albumin/metabolism , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...