Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Yeast ; 40(11): 540-549, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818980

ABSTRACT

Five yeast strains isolated from tree bark and rotten wood collected in central and southwestern China, together with four Brazilian strains (three from soil and rotting wood collected in an Amazonian rainforest biome and one from Bromeliad collected in Alagoas state) and one Costa Rican strain isolated from a flower beetle, represent a new species closely related with Yueomyces sinensis in Saccharomycetaceae, as revealed by the 26S ribosomal RNA gene D1/D2 domain and the internal transcribed spacer region sequence analysis. The name Yueomyces silvicola sp. nov. is proposed for this new species with the holotype China General Microbiological Culture Collection Center 2.6469 (= Japan Collection of Microorganisms 34885). The new species exhibits a whole-genome average nucleotide identity value of 77.8% with Y. sinensis. The two Yueomyces species shared unique physiological characteristics of being unable to utilize ammonium and the majority of the amino acids, including glutamate and glutamine, as sole nitrogen sources. Among the 20 amino acids tested, only leucine and tyrosine can be utilized by the Yueomyces species. Genome sequence comparison showed that GAT1, which encodes a GATA family protein participating in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae, is absent in the Yueomyces species. However, the failure of the Yueomyces species to utilize ammonium, glutamate, and glutamine, which are generally preferred nitrogen sources for microorganisms, implies that more complicated alterations in the central nitrogen metabolism pathway might occur in the genus Yueomyces.


Subject(s)
Ammonium Compounds , Saccharomycetales , Saccharomyces cerevisiae/genetics , Glutamine/genetics , Glutamic Acid/genetics , Phylogeny , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Saccharomycetales/genetics , Amino Acids/genetics , DNA, Fungal/genetics
2.
Article in English | MEDLINE | ID: mdl-34257679

ABSTRACT

Endometriosis is a chronic estrogen-dependent inflammatory disorder that negatively affects the quality of life in women. The Wenjing decoction (WJD) is a traditional Chinese medicine that has been shown to have a therapeutic effect on endometriosis. Our study systematically explored the mechanism of WJD against endometriosis using a network pharmacology approach. Potentially bioactive compounds of WJD and their possible targets were retrieved from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The protein-protein interaction network and herbs-compounds-genes multinetwork were constructed using Cytoscape for visualization. Subsequently, the signaling pathways of common targets were retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and molecular docking was performed using PyRx software. In total, 48 common targets were screened, such as IL6 and ESR1, which were related to inflammation and the endocrine system. The top five bioactive compounds were quercetin, kaempferol, wogonin, beta-sitosterol, and stigmasterol. KEGG enrichment analysis revealed 65 pathways containing inflammatory- and endocrine-related signaling pathways, such as the "TNF signaling pathway" and the "estrogen signaling pathway." Taken together, the results of our network pharmacology analysis predicted that certain active ingredients of WJD might treat endometriosis by regulating inflammation and/or endocrine, which provided references for further understanding and exploration of WJD on endometriosis.

3.
J Biotechnol ; 278: 1-9, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-29660473

ABSTRACT

Gamma-amino butyric acid (GABA) is an important bio-product used in pharmaceuticals, functional foods, and a precursor of the biodegradable plastic polyamide 4 (Nylon 4). Glutamate decarboxylase B (GadB) from Escherichia. coli is a highly active biocatalyst that can convert l-glutamate to GABA. However, its practical application is limited by the poor thermostability and only active under acidic conditions of GadB. In this study, we performed site-directed saturation mutagenesis of the N-terminal residues of GadB from Escherichia coli to improve its thermostability. A triple mutant (M6, Gln5Ile/Val6Asp/Thr7Gln) showed higher thermostability, with a 5.6 times (560%) increase in half-life value at 45 °C, 8.7 °C rise in melting temperature (Tm) and a 14.3 °C rise in the temperature at which 50% of the initial activity remained after 15 min incubation (T1550), compared to wild-type enzyme. Protein 3D structure analysis showed that the induced new hydrogen bonds in the same polypeptide chain or between polypeptide chains in E. coli GadB homo-hexamer may be responsible for the improved thermostability. Increased thermostability contributed to increased GABA conversion ability. After 12 h conversion of 3 mol/L l-glutamate, GABA produced and mole conversion rate catalyzed by M6 whole cells was 297 g/L and 95%, respectively, while those by wild-type GAD was 273.5 g/L and 86.2%, respectively.


Subject(s)
Escherichia coli , Glutamate Decarboxylase , gamma-Aminobutyric Acid/metabolism , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Glutamate Decarboxylase/chemistry , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hydrogen Bonding , Mutagenesis, Site-Directed , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL