Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Aquat Toxicol ; 268: 106852, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310667

ABSTRACT

Benzophenone-3 (BP-3) is a commonly used ultraviolet absorber that has the potential to accumulate in organisms, leading to toxicity. Benzophenone-8 (BP-8) is one of the major metabolites of BP-3. In this study, zebrafish were exposed to different concentrations of BP-3 and BP-8 (1 µg/L, 30 µg/L, and 300 µg/L) to investigate their accumulation and toxic effects in various tissues, including zebrafish brain, gut, and liver. The analysis focused on neurotoxicity, oxidative damage, inflammation, and gene expressions. The results showed that both BP-3 and BP-8 accumulated in the tissues, with the highest concentration observed in the gut, followed by the liver and brain. BP-8 exhibited a stronger ability to accumulate. In the brain, exposure to 1 µg/L of BP-3 and BP-8 promoted cortisol production, while higher exposures (30 µg/L and 300 µg/L) inhibited acetylcholinesterase activity and suppressed cortisol production. In the gut, both BP-3 and BP-8 exposures disrupted oxidative stress, inflammatory immunity, and apoptosis functions. In the liver, BP-3 and BP-8 affected hepatic metabolism, oxidative stress, apoptosis, and inflammatory immunity. Comparing gene expression in the brain, gut, and liver, it was found that BP-3 and BP-8 had a lower effect on gene expression in the brain, while the effect on the gut and liver was significantly higher. BP-8 generally had a higher effect than BP-3, which aligns with the observed accumulation pattern. These findings provide valuable insights for the risk assessment of BP-3 and BP-8 in the aquatic environment.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Acetylcholinesterase/metabolism , Hydrocortisone , Water Pollutants, Chemical/toxicity , Benzophenones/toxicity
2.
J Trop Med ; 2023: 4119956, 2023.
Article in English | MEDLINE | ID: mdl-36895425

ABSTRACT

Trichomonas vaginalis (T. vaginalis) could cause trichomoniasis through sexual transmission, which was globally distributed. In this study, the prevalence and phylogenetic analyses of T. vaginalis among men in Xinxiang were conducted. From October 2018 to December 2019, a total of 634 male clinical samples were collected, including 254 samples of semen, 43 samples of prostate fluid, and 337 samples of urine. These samples were examined by nested PCR and a total of 32 (5.05%) T. vaginalis-positive samples were detected. Among these samples, the positive rates of T. vaginalis in semen, prostate fluid, and urine were 7.87% (20/254), 4.65% (2/43), and 2.97% (10/337), respectively. Three actin genes were successfully isolated and sequenced from the 32 positive DNA samples, and the analysis of the sequence and phylogenetic tree showed that the three actin gene sequences exhibited 99.7%-100% homology to the published actin gene sequence (EU076580) in NCBI, and the T. vaginalis strains in the three positive samples were identified as genotype E. Our results demonstrate a notable genotype of T. vaginalis in the male population and provide insight into the performance of these genetic markers in the molecular epidemiology of trichomoniasis. However, further studies are needed to research the association between the genotype and the pathogenicity of T. vaginalis.

3.
Cell Prolif ; 56(4): e13417, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775884

ABSTRACT

Nasal deformities due to various causes affect the aesthetics and use of the nose, in which case rhinoplasty is necessary. However, the lack of cartilage for grafting has been a major problem and tissue engineering seems to be a promising solution. 3D bioprinting has become one of the most advanced tissue engineering methods. To construct ideal cartilage, bio-ink, seed cells, growth factors and other methods to promote chondrogenesis should be considered and weighed carefully. With continuous progress in the field, bio-ink choices are becoming increasingly abundant, from a single hydrogel to a combination of hydrogels with various characteristics, and more 3D bioprinting methods are also emerging. Adipose-derived stem cells (ADSCs) have become one of the most popular seed cells in cartilage 3D bioprinting, owing to their abundance, excellent proliferative potential, minimal morbidity during harvest and lack of ethical considerations limitations. In addition, the co-culture of ADSCs and chondrocytes is commonly used to achieve better chondrogenesis. To promote chondrogenic differentiation of ADSCs and construct ideal highly bionic tissue-engineered cartilage, researchers have used a variety of methods, including adding appropriate growth factors, applying biomechanical stimuli and reducing oxygen tension. According to the process and sequence of cartilage 3D bioprinting, this review summarizes and discusses the selection of hydrogel and seed cells (centered on ADSCs), the design of printing, and methods for inducing the chondrogenesis of ADSCs.


Subject(s)
Bioprinting , Rhinoplasty , Bioprinting/methods , Cartilage , Tissue Engineering/methods , Hydrogels/pharmacology , Stem Cells , Tissue Scaffolds , Chondrogenesis
4.
Chin Med J (Engl) ; 136(17): 2017-2027, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-36752783

ABSTRACT

ABSTRACT: In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.


Subject(s)
Surgery, Plastic , Tissue Engineering , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Extracellular Matrix
5.
Plast Reconstr Surg ; 151(5): 1016-1028, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36729201

ABSTRACT

BACKGROUND: Wound healing undergoes intricate phases: hemostasis, inflammation, proliferation, and remodeling. Stem cell therapy based on adipose tissue-derived stem cell exosomes (ADSCs-exo) is considered a potential effective treatment for accelerating wound healing. However, the molecular mechanisms of wound healing using ADSCs-exo remain largely unknown. METHODS: Circular wounds, 1 × 1 cm, were generated on C57BL/6 mice, followed by OriCell C57BL/6 mouse adipose-derived mesenchymal stem cell suspension treatment, and wound area was measured and recorded at days 0, 7, and 21, respectively. A comprehensive transcriptome profiling of skin wounds was conducted in the mouse model. Importantly, the authors also examined autophagy and cell migration in mouse keratinocytes treated with ADSCs-exo. Further competing endogenous RNA networks were also used to reveal the relationship between Neat1 and Ulk1 . RESULTS: Mouse keratinocytes treated with ADSCs-exo showed significant up-regulation of pathways related to wound healing, including response to virus, bacterium, immune system, and wounding. Activated autophagy was detected, which significantly promoted the wound repair of mice. Competing endogenous RNA networks uncovered that Neat1 induces the expression of Ulk1 and thus up-regulates autophagic activity to promote wound repair through sponging miR-17-5p. CONCLUSIONS: Collectively, these results reveal a novel molecular mechanism that the autophagy pathway enhanced by the Neat1 /miR-17-5p/ Ulk1 axis can promote the wound healing and suggest that long noncoding RNA Neat1 loaded by ADSCs-exo might be a potential therapeutic target for skin nonhealing wounds. CLINICAL RELEVANCE STATEMENT: This study may provide new clues for the applications of ADSCs-exo in skin wounds and promote the development of ADSCs-exo therapy in clinical treatment of skin wounds.


Subject(s)
Exosomes , MicroRNAs , Mice , Animals , Mice, Inbred C57BL , Wound Healing , Stem Cells , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Adipose Tissue
6.
Aesthetic Plast Surg ; 47(2): 880-891, 2023 04.
Article in English | MEDLINE | ID: mdl-36401134

ABSTRACT

Organoids are 3D structures generated from stem cells. Their functions and physiological characteristics are similar to those of normal organs. They are used in disease mechanism research, new drug development, organ transplantation and other fields. In recent years, the application of 3D materials in plastic surgery for repairing injuries, filling, tissue reconstruction and regeneration has also been investigated. The PubMed/MEDLINE database was queried to search for animal and human studies published through July of 2022 with search terms related to Organoids, Plastic Surgery, Pluripotent Stem Cells, Bioscaffold, Skin Reconstruction, Bone and Cartilage Regeneration. This review presents stem cells, scaffold materials and methods for the construction of organoids for plastic surgery, and it summarizes their research progress in plastic surgery in recent years.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Plastic Surgery Procedures , Surgery, Plastic , Animals , Humans , Surgery, Plastic/methods , Organoids
7.
Aesthetic Plast Surg ; 47(2): 808-824, 2023 04.
Article in English | MEDLINE | ID: mdl-36316460

ABSTRACT

BACKGROUND: Autologous fat grafting has gained increasing popularity used in plastic surgery as a strategy to improve functional and aesthetic outcome. However, variable augmentation results have concerned surgeons in that volume loss of grafted fat reported fluctuates unsteadily. AIM: An optimal technique that clinically maximizes the long-term survival rate of transplantation is in urgent need to be identified. METHOD: The PubMed/MEDLINE database was queried to search for animal and human studies published through March of 2022 with search terms related to adipose grafting encompassing liposuction, adipose graft viability, processing technique, adipose-derived stem cell, SVF and others. RESULTS: 45 in vivo studies met inclusion criteria. The principal of ideal processing technique is effective purification of fat and protection of tissue viability, such as gauze rolling and washing-filtration devices. Cell-assisted lipotransfer including SVF, SVF-gel and ADSCs significantly promotes graft retention via differentiation potential and paracrine manner. ADSCs induce polarization of macrophages to regulate inflammatory response, mediate extracellular matrix remodeling and promote endothelial cell migration and sprouting, and differentiate into adipocytes to replace necrotic cells, providing powerful evidence for the benefits and efficacy of cell-assisted lipotransfer. CONCLUSION: Based on the current evidence, the best strategy can not be decided. Cell-assisted lipotransfer has great potential for use in regenerative medicine. But so far mechanically prepared SVF-gel is conducive to clinical promotion. PRP as endogenous growth factor sustained-release material shows great feasibility. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Lipectomy , Plastic Surgery Procedures , Animals , Humans , Adipose Tissue/transplantation , Adipocytes/transplantation , Autografts
9.
Aesthetic Plast Surg ; 47(1): 282-291, 2023 02.
Article in English | MEDLINE | ID: mdl-35606536

ABSTRACT

BACKGROUND: A severely contracted nose is a common occurrence. Intraoperative expansion is not sufficient to soften the severely constricted nasal envelope, which poses challenges in revision rhinoplasty. In recent years, adjuvant therapies, including nasal fat grafting and cell component injection, are applied before revision rhinoplasty to soften the nasal envelope. Herein, autologous shuffling lipo-aspirated fat and manual mechanical stretch were combined as adjuvant therapy before revision rhinoplasty. METHODS: A total of 24 patients with severe nasal contracture were included in this study. Of these, 8 received autologous shuffling lipo-aspirated fat and manual mechanical stretch before revision rhinoplasty (comprehensive therapy), 8 underwent mechanical stretch and revision rhinoplasty, and 8 patients underwent only revision rhinoplasty. The objective and subjective outcome assessment was processed in the follow-up period of 6 months. Nasal length, nasal tip projection, nasofrontal angle, and nasolabial angle were measured, and potential complications were assessed. RESULTS: All 24 patients underwent a successful revision rhinoplasty. In the comprehensive therapy group, no patient had postoperative wound infection and defect of the nasal column mucous. The comprehensive treatment group had the most significant improvement in nasal length and nasal tip projection, and the nasolabial angle was the closest to 90°, which indicated the most effective nasal revision and aesthetic contour. CONCLUSIONS: The adjuvant therapy combines autologous shuffling lipo-aspirated fat and manual mechanical stretch before revision rhinoplasty could effectively improve the surgical outcome and decrease the postoperative complications regarding severe nasal contractures. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Rhinoplasty , Humans , Nasal Septum/surgery , Follow-Up Studies , Treatment Outcome , Nose/surgery , Retrospective Studies , Esthetics
10.
Chin Med J (Engl) ; 135(21): 2525-2534, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36583914

ABSTRACT

ABSTRACT: Severe muscle injury is still a challenging clinical problem. Exosomes derived from adipose stem cells (ASC-exos) may be a potential therapeutic tool, but their mechanism is not completely clear. This review aims to elaborate the possible mechanism of ASC-exos in muscle regeneration from the perspective of signal pathways and provide guidance for further study. Literature cited in this review was acquired through PubMed using keywords or medical subject headings, including adipose stem cells, exosomes, muscle regeneration, myogenic differentiation, myogenesis, wingless/integrated (Wnt), mitogen-activated protein kinases, phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/Akt), Janus kinase/signal transducers and activators of transcription, and their combinations. We obtained the related signal pathways from proteomics analysis of ASC-exos in the literature, and identified that ASC-exos make different contributions to multiple stages of skeletal muscle regeneration by those signal pathways.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Stem Cells/metabolism , Wound Healing , Muscles/metabolism , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...