Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Org Lett ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739778

ABSTRACT

A three-component reaction for the synthesis of dihydropyrrolo[3,4-e][1,3]thiazines has been developed. Elemental sulfur, maleimides, and 1,3,5-triazinanes are assembled together through sulfuration/nucleophilic attack in N-methylpyrrolidin-2-one (NMP) under mild conditions. A small amount of NaHCO3 is important for the activation of the reaction. In this method, sulfur plays a dual role in thiazine ring formation, while triazinanes are utilized as three-atom synthons in the annulation reaction.

2.
J Ethnopharmacol ; 329: 118169, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38621463

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY: We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS: UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS: A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS: Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.

3.
J Ethnopharmacol ; 329: 118165, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38588984

ABSTRACT

BACKGROUND: Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE: This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS: UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS: 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and ß-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION: XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.

4.
Insect Mol Biol ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613398

ABSTRACT

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

5.
Phytomedicine ; 123: 155183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992491

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Shenge Formula (SGF) is a traditional Chinese medicine that has been used in the clinical treatment of NAFLD, and its therapeutic potential in patients and NAFLD animal models has been demonstrated in numerous studies. However, its underlying mechanism for treating NAFLD remains unclear. PURPOSE: The aim of this study was to investigate the mechanism of SGF in the treatment of NAFLD using the proteomics strategy. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the main components of SGF. A mouse model of nonalcoholic fatty liver disease was constructed by feeding mice with a high-fat diet for 16 weeks. SGF was administered for an additional 8 weeks, and metformin was used as a positive control. Liver sections were subjected to histopathological assessments. LC-MS/MS was used for the label-free quantitative proteomic analysis of liver tissues. Candidate proteins and pathways were validated both in vivo and in vitro through qRT-PCR, western blot, and immunohistochemistry. The functions of the validated pathways were further investigated using the inhibition strategy. RESULTS: Thirty-nine ingredients were identified in SGF extracts, which were considered to be key compounds in the treatment of NAFLD. SGF administration attenuated obesity and fatty liver by reducing the body weight and liver weight in HFD-fed mice. It also relieved HFD-induced insulin resistance. More importantly, hepatic steatosis was significantly attenuated by SGF administration both in vivo and in vitro. Proteomic profiling of mouse liver tissues identified 184 differential expressed proteins (DEPs) associated with SGF treatment. Bioinformatic analysis of DEPs revealed that regulating the lipid metabolism and energy consumption process of hepatocytes was the main role of SGF in NAFLD treatment. This also indicated that ACOX1 might be the potential target of SGF, which was subsequently verified both in vitro and in vivo. The results demonstrated that SGF inhibited ACOX1 activity, thereby activating PPARα and upregulating CPT1A expression. Increased CPT1A expression promoted mitochondrial ß-oxidation, leading to reduced lipid accumulation in hepatocytes. CONCLUSIONS: Overall, our findings confirmed the protective effect of SGF against NAFLD and revealed the underlying molecular mechanism of regulating lipid metabolism.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Diet, High-Fat/adverse effects , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Liver , Lipid Metabolism , Obesity/complications , Mice, Inbred C57BL
6.
Environ Sci Pollut Res Int ; 31(4): 5429-5443, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123768

ABSTRACT

Limited data have examined the association between air pollution and the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). We aimed to investigate whether long-term exposure to air pollutants is related to the development of ESRD among patients with T2DM and CKD. A total of 1,738 patients with T2DM and CKD hospitalized in Peking University Third Hospital from January 1, 2013, to December 31, 2021 were enrolled in this study. The outcome was defined as the occurrence of ESRD. Data on six air pollutants (PM2.5, PM10, CO, NO2, SO2, and O3) from 35 monitoring stations were obtained from the Beijing Municipal Ecological and Environmental Monitoring Center. Long-term exposure to air pollutants during the follow-up period was measured using the ordinary Kriging method. During a mean follow-up of 41 months, 98 patients developed ESRD. Multivariate logistic regression analysis showed that an increase of 10 µg/m3 in PM2.5 (odds ratio [OR] 1.19, 95% confidence interval [CI] 1.03-1.36) and PM10 (OR 1.15, 95% CI 1.02-1.30) concentration were positively associated with ESRD. An increase of 1 mg/m3 in CO (2.80, 1.05-7.48) and an increase of 1 µg/m3 in SO2 (1.06, 1.00-1.13) concentration were also positively associated with ESRD. Apart from O3 and NO2, all the above air pollutants have additional predictive value for ESRD in patients with T2DM and CKD. The results of Bayesian kernel machine regression and the weighted quantile sum regression all showed that PM2.5 was the most important air pollutant. Backward stepwise logistic regression showed that PM2.5 was the only pollutant remaining in the prediction model. In patients with T2DM and CKD, long-term exposure to ambient PM2.5, PM10, CO, and SO2 was positively associated with the development of ESRD.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus, Type 2 , Environmental Pollutants , Kidney Failure, Chronic , Humans , Air Pollutants/analysis , Beijing/epidemiology , Environmental Pollutants/analysis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/chemically induced , Retrospective Studies , Bayes Theorem , Nitrogen Dioxide/analysis , Environmental Exposure/analysis , Air Pollution/analysis , Kidney Failure, Chronic/chemically induced , Kidney Failure, Chronic/epidemiology , China/epidemiology , Particulate Matter/analysis
7.
J Cancer ; 14(15): 2798-2810, 2023.
Article in English | MEDLINE | ID: mdl-37781084

ABSTRACT

Tripartite motif-containing protein 28 (TRIM28), as a transcriptional cofactor, has pleiotropic biological effects, such as silencing genes, promoting cellular proliferation and differentiation, and facilitating DNA repair. It is reported that TRIM28 is also correlated with immune infiltration in liver cancer that highlights an unnoticed function of TRIM28 in immune system. However, the prognostic and immunotherapeutic role of TRIM28 in human cancer has not been elucidated. In this study, we conducted a systematic pan-cancer analysis and partial experimental validation of TRIM28 as an immunological and prognostic predictor and its involvement in immunotherapy resistance. We found that TRIM28 expression was higher in various tumor tissues than in normal tissues. Higher TRIM28 expression was associated with poorer prognosis in multiple cancers. The expression of TRIM28 was positively correlated with the presence of T cells, macrophages and neutrophils, and TRIM28 also promoted the infiltration of a series of immune cell. Moreover, TRIM28 affected a wide range of cancer-related scores, and the abnormal expression of TRIM28 was also involved in tumor mutational burden, drug sensitivity, and microsatellite instability in cancer. The results suggest that TRIM28 is a potentially valuable immune response indicator and a molecular biomarker for predicting the prognosis of cancer patients.

8.
J Ultrasound Med ; 42(11): 2661-2672, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37449666

ABSTRACT

OBJECTIVE: The present study assessed the diagnostic and prognostic significance of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for suspected intrathoracic metastasis after HNC treatment. METHODS: A retrospective analysis was conducted on 75 patients with a prior history of head and neck cancer treatment who underwent EBUS-TBNA for suspected intrathoracic metastases between March 2012 and December 2021. RESULTS: A total of 126 targeted lesions, including 107 mediastinal/hilar lymph nodes and 19 intrapulmonary/mediastinal masses, were sampled. The metastatic head and neck cancer (HNC) cases detected by EBUS-TBNA consisted of nasopharyngeal carcinoma (n = 24), oropharyngeal carcinoma (n = 3), hypopharynx carcinoma (n = 6), laryngeal carcinoma (n = 6), and oral cavity carcinoma (n = 6). Cases with negative EBUS-TBNA results consisted of tuberculosis (n = 9), sarcoidosis (n = 3), anthracosis (n = 9), and reactive lymphadenitis (n = 9). Six false-negative cases were found among the 75 patients with suspected intrathoracic metastases. The diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the EBUS-TBNA procedure for metastatic HNC were 88.2, 100.0, 100.0, 80, and 92.0%, respectively. The diagnosis of HNC intrathoracic metastasis by EBUS-TBNA correlated with an adverse prognosis in terms of overall survival (OS) (P = .008). The log-rank univariate analysis and Cox regression multivariate analysis results indicated that the detection of metastatic HNC through EBUS-TBNA was a significant independent prognostic factor for patients with HNC who had received prior treatment. CONCLUSIONS: Endobronchial ultrasound-guided transbronchial needle aspiration is a safe, effective, and minimally invasive procedure for assessing suspected intrathoracic metastasis in HNC patients after treatment. The intrathoracic metastasis detected by EBUS-TBNA has crucial prognostic significance in previously treated HNC patients.


Subject(s)
Carcinoma , Head and Neck Neoplasms , Lung Neoplasms , Humans , Prognosis , Retrospective Studies , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Mediastinum , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/pathology , Carcinoma/etiology , Carcinoma/pathology , Lung Neoplasms/pathology
9.
Mar Drugs ; 21(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504904

ABSTRACT

The concise and highly convergent synthesis of the isodityrosine unit of seongsanamide A-D and its derivatives bearing a diaryl ether moiety is described. In this work, the synthetic strategy features palladium-catalyzed C(sp3)-H functionalization and a Cu/ligand-catalyzed coupling reaction. We report a practical protocol for the palladium-catalyzed mono-arylation of ß-methyl C(sp3)-H of an alanine derivative bearing a 2-thiomethylaniline auxiliary. The reaction is compatible with a variety of functional groups, providing practical access to numerous ß-aryl-α-amino acids; these acids can be converted into various tyrosine and dihydroxyphenylalanine (DOPA) derivatives. Then, a CuI/N,N-dimethylglycine-catalyzed arylation of the already synthesized DOPA derivatives with aryl iodides is described for the synthesis of isodityrosine derivatives.


Subject(s)
Palladium , Tyrosine , Palladium/chemistry , Catalysis , Dihydroxyphenylalanine
10.
Arterioscler Thromb Vasc Biol ; 43(8): e323-e338, 2023 08.
Article in English | MEDLINE | ID: mdl-37317851

ABSTRACT

BACKGROUND: Vascular growth followed by vessel specification is crucial for the establishment of a hierarchical blood vascular network. We have shown that TIE2 is required for vein development while little is known about its homologue TIE1 (tyrosine kinase with immunoglobulin-like and EGF [epithelial growth factor]-like domains 1) in this process. METHODS: We analyzed functions of TIE1 as well as its synergy with TIE2 in the regulation of vein formation by employing genetic mouse models targeting Tie1, Tek, and Nr2f2, together with in vitro cultured endothelial cells to decipher the underlying mechanism. RESULTS: Cardinal vein growth appeared normal in TIE1-deficient mice, whereas TIE2 deficiency altered the identity of cardinal vein endothelial cells with the aberrant expression of DLL4 (delta-like canonical Notch ligand 4). Interestingly, the growth of cutaneous veins, which was initiated at approximately embryonic day 13.5, was retarded in mice lack of TIE1. TIE1 deficiency disrupted the venous integrity, displaying increased sprouting angiogenesis and vascular bleeding. Abnormal venous sprouts with defective arteriovenous alignment were also observed in the mesenteries of Tie1-deleted mice. Mechanistically, TIE1 deficiency resulted in the decreased expression of venous regulators including TIE2 and COUP-TFII (chicken ovalbumin upstream promoter transcription factor, encoded by Nr2f2, nuclear receptor subfamily 2 group F member 2) while angiogenic regulators were upregulated. The alteration of TIE2 level by TIE1 insufficiency was further confirmed by the siRNA-mediated knockdown of Tie1 in cultured endothelial cells. Interestingly, TIE2 insufficiency also reduced the expression of TIE1. Combining the endothelial deletion of Tie1 with 1 null allele of Tek resulted in a progressive increase of vein-associated angiogenesis leading to the formation of vascular tufts in retinas, whereas the loss of Tie1 alone produced a relatively mild venous defect. Furthermore, the induced deletion of endothelial Nr2f2 decreased both TIE1 and TIE2. CONCLUSIONS: Findings from this study imply that TIE1 and TIE2, together with COUP-TFII, act in a synergistic manner to restrict sprouting angiogenesis during the development of venous system.


Subject(s)
Receptor, TIE-1 , Receptor, TIE-2 , Mice , Animals , Receptor, TIE-1/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism , Endothelial Cells/metabolism , Signal Transduction , Veins
12.
Front Endocrinol (Lausanne) ; 14: 1150980, 2023.
Article in English | MEDLINE | ID: mdl-37152938

ABSTRACT

Aims: It has been suggested that the triglyceride-glucose (TyG) index is a novel and reliable surrogate marker of insulin resistance (IR). However, its relationship with the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) remains uncertain. Accordingly, we sought to examine the relationship between the TyG index and ESRD risk in patients with T2DM and CKD. Methods: From January 2013 to December 2021, 1,936 patients with T2DM and CKD hospitalized at Peking University Third Hospital (Beijing, China) were enrolled into the study. The formula for calculating the TyG index was ln[fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2]. ESRD was defined as an estimated glomerular filtration rate of less than 15 mL/min/1.73 m2 or the commencement of dialysis or renal transplantation. The relationship between the TyG index and ESRD risk was analyzed using Cox proportional hazard regression. Results: 105 (5.42%) participants developed ESRD over a mean follow-up of 41 months. The unadjusted analysis revealed a 1.50-fold (95% confidence interval [CI] 1.17-1.93; P = 0.001) increased risk for ESRD per one unit rise in the TyG index, and the positive association remained stable in the fully adjusted model (hazard ratio, 1.49; 95% CI, 1.12-1.99; P = 0.006). Analysis using restricted cubic spline revealed a significant positive association between the TyG index and ESRD risk. In addition, Kaplan-Meier analysis revealed significant risk stratification with a TyG index cutoff value of 9.5 (P = 0.003). Conclusion: In individuals with T2DM and CKD, a significant and positive association was shown between an elevated TyG index and the risk of ESRD. This conclusion provides evidence for the clinical importance of the TyG index for evaluating renal function decline in individuals with T2DM and CKD.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Glucose , Risk Factors , Triglycerides , Blood Glucose , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Kidney Failure, Chronic/complications
13.
Front Pharmacol ; 14: 1016129, 2023.
Article in English | MEDLINE | ID: mdl-37033635

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a predominant contributor to end-stage liver disease in the forthcoming decades. Polygonum perfoliatum L. (PPL) is an herbal medicine with anti-lipid peroxidation and anti-inflammatory properties. However, detailed hepatoprotective effects of PPL against NAFLD and its underlying mechanisms are not fully understood. Here, we found that PPL protects against high fat diet (HFD)-induced hepatic steatosis, lipid peroxidation, and glucose-lipid metabolism dysfunction in NAFLD mice. We therefore performed a label-free quantitative proteomic profiling analysis to determine the effect of PPL treatment on liver tissue proteomics and identified that activated PPARs/CPT1A/CPT2-mediated hepatic fatty acid ß-oxidation (FAO) process was significantly altered. In vitro treatment of hepatocytes with PPL confirmed this altered process and FAO inhibitor etomoxir (ETO) attenuated the lipid-lowering activity of PPL in hepatocytes. Ultra-high-performance liquid chromatography/Q Exactive-HFX (UPLC/QE-HFX) was used to determine the material basis of anti-NAFLD activity of PPL. Our results have demonstrated the efficacy and potential mechanisms of PPL as an effective pharmacological therapy of NAFLD.

14.
J Inflamm Res ; 16: 1595-1610, 2023.
Article in English | MEDLINE | ID: mdl-37092126

ABSTRACT

Background and Purpose: Current pharmacological approaches to prevent hepatic ischemia/reperfusion injury (IRI) are limited. To mitigate hepatic injury, more research is needed to improve the understanding of hepatic IRI. Depending on traditional Chinese medicine (TCM) theory, acupuncture therapy has been used for the treatment of ischemic diseases with good efficacy. However, the efficacy and mechanism of acupuncture for hepatic IRI are still unclear. Methods: Blood provided to the left and middle lobe of mice livers was blocked with a non-invasive clamp and then the clamps were removed for reperfusion to establish a liver IRI model. Quantitative proteomics approach was used to evaluate the impact of EA pretreatment on liver tissue proteome in the IRI group. Serum biochemistry was used to detect liver injury, inflammation, and oxidative stress levels. H&E staining and TUNEL staining were used to detect hepatocyte injury and apoptosis. Immunohistochemistry and ELISA were used to detect the degree of inflammatory cell infiltration and the level of inflammation. The anti-inflammatory and antioxidant capacities were detected by Quantitative RT-PCR and Western blotting. Results: We found that EA at Zusanli (ST36) has a protective effect on hepatic IRI in mice by alleviating oxidative stress, hepatocyte death, and inflammation response. Nuclear factor E2-related factor 2 (Nrf2) as a crucial target was regulated by EA and was then successfully validated. The Nrf2 inhibitor ML385 and cervical vagotomy eliminated the protective effect in the EA treatment group. Conclusion: This study firstly demonstrated that EA pretreatment at ST36 significantly ameliorates hepatic IRI in mice by inhibiting oxidative stress via activating the Nrf2 signal pathway, which was vagus nerve-dependent.

15.
Cell Death Dis ; 14(4): 234, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005437

ABSTRACT

The 5-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MicroRNAs (miRNAs) are involved in the occurrence of NSCLC. miR-122-5p interacts with wild-type p53 (wtp53), and wtp53 affects tumor growth by inhibiting the mevalonate (MVA) pathway. Therefore, this study aimed to evaluate the role of these factors in NSCLC. The role of miR-122-5p and p53 was established in samples from NSCLC patients, and human NSCLC cells A549 using the miR-122-5p inhibitor, miR-122-5p mimic, and si-p53. Our results showed that inhibiting miR-122-5p expression led to the activation of p53. This inhibited the progression of the MVA pathway in the NSCLC cells A549, hindered cell proliferation and migration, and promoted apoptosis. miR-122-5p was negatively correlated with p53 expression in p53 wild-type NSCLC patients. The expression of key genes in the MVA pathway in tumors of p53 wild-type NSCLC patients was not always higher than the corresponding normal tissues. The malignancy of NSCLC was positively correlated with the high expression of the key genes in the MVA pathway. Therefore, miR-122-5p regulated NSCLC by targeting p53, providing potential molecular targets for developing targeted drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mevalonic Acid , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor
16.
Huan Jing Ke Xue ; 44(4): 2234-2242, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040972

ABSTRACT

Soil polluted by heavy metals (HMs) is an important environmental issue in China, and regional geological background is a vital factor that influences the enrichment of HMs in soils. Previous studies have shown that soils derived from black shales are commonly enriched in HMs and present high potential eco-environmental risks. However, few studies have investigated the HMs in different agricultural products, which inhibit the safe use of land and safe production of food crops in black shale regions. This study investigated the concentrations, pollution risks, and speciation of HMs in soils and agricultural products from a typical black shale region in Chongqing. The results showed that the study soils were enriched in Cd, Cr, Cu, Zn, and Se but not in Pb. Approximately 98.7% of total soils exceeded the risk screening values, and 47.3% of total soils exceeded the risk intervention values. Cd had the highest pollution level and potential ecological risks and was the primary pollutant in soils of the study area. Most of the Cd resided in ion-exchangeable fractions (40.6%), followed by residual fractions (19.1%) and weak organic matter combined fractions (16.6%), whereas Cr, Cu, Pb, Se, and Zn were dominated by residual fractions. Additionally, organic combined fractions contributed to Se and Cu, and Fe-Mn oxide combined fractions contributed to Pb. These results indicated that Cd had higher mobility and availability than those of other metals. The agricultural products presented a weak ability to accumulate HMs. Approximately 18.7% of the collected samples with Cd exceeded the safety limit, but the enrichment factor was relatively low, indicating low pollution risks of the heavy metals. The findings of this study could provide guidelines for safe use of land and safe production of food crops in black shale regions with high geological background.

17.
J Immunother ; 46(4): 154-159, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37017991

ABSTRACT

Programmed cell death 1 ligand 1), programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3, lymphocyte activation gene-3, and T-cell immunoglobulin and ITIM domain (TIGIT) are considered major immune co-inhibitory receptors (CIRs) and the most promising immunotherapeutic targets in cancer treatment, but they are largely unexplored in upper tract urothelial carcinoma (UTUC). The aim of this Cohort Study was to provide evidence concerning expression profiles and the clinical significance of CIRs among Chinese UTUC patients. A total of 175 UTUC patients who received radical surgery in our center were included. We used immunohistochemistry to evaluate CIR expressions in tissue microarrays (TMAs). Clinicopathological characteristics and prognostic correlations of CIR proteins were retrospectively analyzed. TIGIT, T-cell immunoglobulin and mucin-domain containing-3, PD-1, CTLA-4, Programmed cell death 1 ligand 1, and lymphocyte activation gene-3 high expression was examined in 136(77.7%), 86(49.1%), 57(32.6%), 18(10.3%), 28(16.0%), and 18(10.3%) patients, respectively. Log-rank tests and Multivariate Cox analysis both implied CTLA-4 and TIGIT expression was associated with worse relapse-free survival. In conclusion, this is the largest Chinese UTUC cohort study, and we analyzed the Co-inhibitory receptor expression profiles in UTUC. We identified CTLA-4 and TIGIT expression as promising biomarkers for tumor recurrence. Furthermore, a subset of advanced UTUCs are probably immunogenic, for which single or combined immunotherapy may be potential therapeutic approaches in the future.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Cohort Studies , B7-H1 Antigen/metabolism , CTLA-4 Antigen/metabolism , Retrospective Studies , Hepatitis A Virus Cellular Receptor 2/metabolism , Programmed Cell Death 1 Receptor , Neoplasm Recurrence, Local , Receptors, Immunologic/metabolism , Immunoglobulins
18.
Eur J Pharmacol ; 938: 175385, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36379259

ABSTRACT

BACKGROUND: Depression is a common disorder with a complex pathogenesis. Tanshinone IIA (TAN IIA) is a botanical agent with neuroprotective and antidepressant properties. OBJECTIVE: To examine the effects of TAN IIA on chronic unpredictable mild stress (CUMS)-induced depression-like behavior and cognitive impairment in rats. METHODS: Rats were exposed to CUMS for 4 weeks, followed by the oral administration of TAN IIA, Deanxit (DEAN), or normal saline for an additional 4 weeks. The control rats were fed with regular chow and administered with normal saline for 4 weeks. Behavioral tests were performed to assess the effects of TAN IIA on depression-like behavior and cognitive impairment in rats with CUMS. The morphology of dendrites was analyzed by Golgi staining. Immunofluorescence staining was performed to determine protein localization. RESULTS: TAN IIA treatment ameliorated CUMS-induced depression-like behavior and cognitive impairment in rats. TAN IIA treatment also reversed the effects of CUMS on dendritic complexity and the levels of gamma-aminobutyric acid (GABA) in the hippocampus and prefrontal cortex. Rats with CUMS showed decreased levels of brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin receptor kinase B (TrkB), upregulated expression of GABA transporter 1 (GAT1), and reduced expression of synaptic proteins in the hippocampus, while TAN IIA treatment significantly diminished the effects of CUMS exposure. In addition, GAT1 was colocalized with N-methyl-D-aspartate receptor 2B. CONCLUSION: TAN IIA ameliorates CUMS-induced depression-like behavior and cognitive impairment in rats by regulating the BDNF/TrkB/GAT1 signaling pathway, suggesting that TAN IIA may be a candidate drug for the treatment of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Animals , Rats , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Depression/drug therapy , Depression/etiology , Depression/metabolism , Disease Models, Animal , Hippocampus , Signal Transduction , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
19.
Mol Divers ; 27(1): 103-123, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35266101

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high disability and mortality. Clinical studies have shown that the Traditional Chinese Medicine Bufei Granule (BFG) has conspicuous effects on relieving cough and improving lung function in patients with COPD and has a reliable effect on the treatment of COPD, whereas the therapeutic mechanism is vague. In the present study, the latent bronchodilators and mechanism of BFG in the treatment of COPD were discussed through the method of network pharmacology. Then, the molecular docking and molecular dynamics simulation were performed to calculate the binding efficacy of corresponding compounds in BFG to muscarinic receptor. Finally, the effects of BFG on bronchial smooth muscle were validated by in vitro experiments. The network pharmacology results manifested the anti-COPD effect of BFG was mainly realized via restraining airway smooth muscle contraction, activating cAMP pathways and relieving oxidative stress. The results of molecular docking and molecular dynamics simulation showed alpinetin could bind to cholinergic receptor muscarinic 3. The in vitro experiment verified both BFG and alpinetin could inhibit the levels of CHRM3 and acetylcholine and could be potential bronchodilators for treating COPD. This study provides an integrating network pharmacology method for understanding the therapeutic mechanisms of traditional Chinese medicine, as well as a new strategy for developing natural medicines for treating COPD.


Subject(s)
Drugs, Chinese Herbal , Pulmonary Disease, Chronic Obstructive , Humans , Lung/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Bronchodilator Agents/pharmacology , Bronchodilator Agents/metabolism , Bronchodilator Agents/therapeutic use , Molecular Docking Simulation , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/therapeutic use
20.
J Nat Prod ; 85(12): 2836-2844, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36399709

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is highly validated as a therapeutic target for type 2 diabetes. However, active site-directed PTP1B inhibitors generally suffer from poor selectivity and bioavailability. Inspired by the identification of a unique anthraquinone-coumarin hybrid from Knoxia valerianoides exhibiting good specificity for PTP1B over the highly homologous T-cell protein tyrosine phosphatase (TCPTP), further chemical investigation of this plant species led to the isolation of nine new anthraquinone glycosides (1-9) and two known ones (10 and 11). Structures were characterized by a combination of spectroscopic analyses and chemical methods. All compounds showed PTP1B inhibitory activities with IC50 values ranging from 1.05 to 13.74 µM. Compounds 4 and 8 exhibited greater than 64-fold selectivity over TCPTP. Enzyme kinetic studies revealed that compounds 4 and 7 behaved as mixed-type inhibitors. Docking studies predicted similar binding modes of these compounds at the allosteric site positioned between helices α3 and α6.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/therapeutic use , Kinetics , Enzyme Inhibitors/pharmacology , Anthraquinones/chemistry , Glycosides/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...