Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 16(11): 2236-2252, 2023 11.
Article in English | MEDLINE | ID: mdl-37817426

ABSTRACT

This single-center study administered MIJ821 (onfasprodil) as an intravenous infusion to healthy volunteers and included two parts: a single ascending dose study (Part 1) and a repeated intravenous dose study (Part 2). Primary objective was to evaluate the safety and tolerability of single ascending intravenous doses infused over a 40-min period and of two repeated doses (1 week apart) of MIJ821 in healthy volunteers. Secondary objectives were to assess the pharmacokinetics of MIJ821 after intravenous infusion in Part 1 and Part 2 of the study. Overall, 43 subjects in Part 1 and 12 subjects in Part 2 were randomized in the study. Median age in Part 1 and Part 2 was 45.0 and 43.5 years, respectively, with the majority being Caucasian (Part 1: 84%; Part 2: 92%). 19 subjects (44.2%) in Part 1 and 8 subjects (66.7%) in Part 2 experienced at least one adverse event (AE). Following single dose in Part 1 and Part 2, the AUCinf values of MIJ821 increased in a dose-proportional manner across the dose range 0.016-0.48 mg/kg and the Cmax values in a slight overproportional manner across the dose range 0.048-0.48 mg/kg. At the highest dose of 0.48 mg/kg, the geometric mean AUCinf was 708 h ng/mL and the geometric mean Cmax was 462 ng/mL. Inspection of 1-h post-dose resting electroencephalography activity across cohorts showed a relationship to administered dose, providing exploratory evidence of distal target engagement. In conclusion, MIJ821 showed a good safety and tolerability profile in healthy volunteers. Dissociative AEs were mild, transient, and dose-dependent.


Subject(s)
Infusions, Intravenous , Humans , Double-Blind Method , Area Under Curve , Healthy Volunteers , Dose-Response Relationship, Drug
2.
PLoS One ; 17(1): e0261947, 2022.
Article in English | MEDLINE | ID: mdl-34995285

ABSTRACT

OBJECTIVE: The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson's disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. BACKGROUND: Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. METHODS: Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. RESULTS: The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). CONCLUSIONS: This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.


Subject(s)
Brain/physiopathology , Electroencephalography , Evoked Potentials , Machine Learning , Parkinson Disease , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology
3.
J Pain ; 17(1): 14-26, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26456677

ABSTRACT

Despite promising preliminary results in treating fibromyalgia (FM) pain, no neuromodulation technique has been adopted in clinical practice because of limited efficacy, low response rate, or poor tolerability. This phase II open-label trial aims to define a methodology for a clinically effective treatment of pain in FM by establishing treatment protocols and screening procedures to maximize efficacy and response rate. High-definition transcranial direct current stimulation (HD-tDCS) provides targeted subthreshold brain stimulation, combining tolerability with specificity. We aimed to establish the number of HD-tDCS sessions required to achieve a 50% FM pain reduction, and to characterize the biometrics of the response, including brain network activation pain scores of contact heat-evoked potentials. We report a clinically significant benefit of a 50% pain reduction in half (n = 7) of the patients (N = 14), with responders and nonresponders alike benefiting from a cumulative effect of treatment, reflected in significant pain reduction (P = .035) as well as improved quality of life (P = .001) over time. We also report an aggregate 6-week response rate of 50% of patients and estimate 15 as the median number of HD-tDCS sessions to reach clinically meaningful outcomes. The methodology for a pivotal FM neuromodulation clinical trial with individualized treatment is thus supported. ONLINE REGISTRATION: Registered in Clinicaltrials.gov under registry number NCT01842009. PERSPECTIVE: In this article, an optimized protocol for the treatment of fibromyalgia pain with targeted subthreshold brain stimulation using high-definition transcranial direct current stimulation is outlined.


Subject(s)
Fibromyalgia/therapy , Quality of Life , Transcranial Direct Current Stimulation/methods , Adult , Aged , Female , Fibromyalgia/physiopathology , Hot Temperature , Humans , Male , Middle Aged , Pain Management/methods , Pain Measurement , Pain Threshold/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...