Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Virus Evol ; 10(1): veae015, 2024.
Article in English | MEDLINE | ID: mdl-38510920

ABSTRACT

We investigated transmission dynamics of a large human immunodeficiency virus (HIV) outbreak among persons who inject drugs (PWID) in KY and OH during 2017-20 by using detailed phylogenetic, network, recombination, and cluster dating analyses. Using polymerase (pol) sequences from 193 people associated with the investigation, we document high HIV-1 diversity, including Subtype B (44.6 per cent); numerous circulating recombinant forms (CRFs) including CRF02_AG (2.5 per cent) and CRF02_AG-like (21.8 per cent); and many unique recombinant forms composed of CRFs with major subtypes and sub-subtypes [CRF02_AG/B (24.3 per cent), B/CRF02_AG/B (0.5 per cent), and A6/D/B (6.4 per cent)]. Cluster analysis of sequences using a 1.5 per cent genetic distance identified thirteen clusters, including a seventy-five-member cluster composed of CRF02_AG-like and CRF02_AG/B, an eighteen-member CRF02_AG/B cluster, Subtype B clusters of sizes ranging from two to twenty-three, and a nine-member A6/D and A6/D/B cluster. Recombination and phylogenetic analyses identified CRF02_AG/B variants with ten unique breakpoints likely originating from Subtype B and CRF02_AG-like viruses in the largest clusters. The addition of contact tracing results from OH to the genetic networks identified linkage between persons with Subtype B, CRF02_AG, and CRF02_AG/B sequences in the clusters supporting de novo recombinant generation. Superinfection prevalence was 13.3 per cent (8/60) in persons with multiple specimens and included infection with B and CRF02_AG; B and CRF02_AG/B; or B and A6/D/B. In addition to the presence of multiple, distinct molecular clusters associated with this outbreak, cluster dating inferred transmission associated with the largest molecular cluster occurred as early as 2006, with high transmission rates during 2017-8 in certain other molecular clusters. This outbreak among PWID in KY and OH was likely driven by rapid transmission of multiple HIV-1 variants including de novo viral recombinants from circulating viruses within the community. Our findings documenting the high HIV-1 transmission rate and clustering through partner services and molecular clusters emphasize the importance of leveraging multiple different data sources and analyses, including those from disease intervention specialist investigations, to better understand outbreak dynamics and interrupt HIV spread.

2.
Viruses ; 15(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38005885

ABSTRACT

Hantaviruses zoonotically infect humans worldwide with pathogenic consequences and are mainly spread by rodents that shed aerosolized virus particles in urine and feces. Bioinformatics methods for hantavirus diagnostics, genomic surveillance and epidemiology are currently lacking a comprehensive approach for data sharing, integration, visualization, analytics and reporting. With the possibility of hantavirus cases going undetected and spreading over international borders, a significant reporting delay can miss linked transmission events and impedes timely, targeted public health interventions. To overcome these challenges, we built HantaNet, a standalone visualization engine for hantavirus genomes that facilitates viral surveillance and classification for early outbreak detection and response. HantaNet is powered by MicrobeTrace, a browser-based multitool originally developed at the Centers for Disease Control and Prevention (CDC) to visualize HIV clusters and transmission networks. HantaNet integrates coding gene sequences and standardized metadata from hantavirus reference genomes into three separate gene modules for dashboard visualization of phylogenetic trees, viral strain clusters for classification, epidemiological networks and spatiotemporal analysis. We used 85 hantavirus reference datasets from GenBank to validate HantaNet as a classification and enhanced visualization tool, and as a public repository to download standardized sequence data and metadata for building analytic datasets. HantaNet is a model on how to deploy MicrobeTrace-specific tools to advance pathogen surveillance, epidemiology and public health globally.


Subject(s)
Communicable Diseases , Hantavirus Infections , Orthohantavirus , Animals , Humans , Orthohantavirus/genetics , Phylogeny , Hantavirus Infections/epidemiology , Communicable Diseases/epidemiology , Disease Outbreaks , Genomics , Rodentia
3.
Viruses ; 15(4)2023 04 10.
Article in English | MEDLINE | ID: mdl-37112921

ABSTRACT

Transmitted HIV drug resistance in Bulgaria was first reported in 2015 using data from 1988-2011. We determined the prevalence of surveillance drug resistance mutations (SDRMs) and HIV-1 genetic diversity in Bulgaria during 2012-2020 using polymerase sequences from 1053 of 2010 (52.4%) antiretroviral therapy (ART)-naive individuals. Sequences were analyzed for DRM using the WHO HIV SDRM list implemented in the calculated population resistance tool at Stanford University. Genetic diversity was inferred using automated subtyping tools and phylogenetics. Cluster detection and characterization was performed using MicrobeTrace. The overall rate of SDRMs was 5.7% (60/1053), with 2.2% having resistance to nucleoside reverse transcriptase inhibitors (NRTIs), 1.8% to non-nucleoside reverse transcriptase inhibitors (NNRTIs), 2.1% to protease inhibitors (PIs), and 0.4% with dual-class SDRMs. We found high HIV-1 diversity, with the majority being subtype B (60.4%), followed by F1 (6.9%), CRF02_AG (5.2%), A1 (3.7%), CRF12_BF (0.8%), and other subtypes and recombinant forms (23%). Most (34/60, 56.7%) of the SDRMs were present in transmission clusters of different subtypes composed mostly of male-to-male sexual contact (MMSC), including a 14-member cluster of subtype B sequences from 12 MMSC and two males reporting heterosexual contact; 13 had the L90M PI mutation and one had the T215S NRTI SDRM. We found a low SDRM prevalence amid high HIV-1 diversity among ART-naive patients in Bulgaria during 2012-2020. The majority of SDRMs were found in transmission clusters containing MMSC, indicative of onward spread of SDRM in drug-naive individuals. Our study provides valuable information on the transmission dynamics of HIV drug resistance in the context of high genetic diversity in Bulgaria, for the development of enhanced prevention strategies to end the epidemic.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Male , Reverse Transcriptase Inhibitors/therapeutic use , Bulgaria/epidemiology , Drug Resistance, Viral/genetics , Mutation , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV-1/genetics , Prevalence , Phylogeny , Genotype , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
5.
PLoS Comput Biol ; 17(9): e1009300, 2021 09.
Article in English | MEDLINE | ID: mdl-34492010

ABSTRACT

Outbreak investigations use data from interviews, healthcare providers, laboratories and surveillance systems. However, integrated use of data from multiple sources requires a patchwork of software that present challenges in usability, interoperability, confidentiality, and cost. Rapid integration, visualization and analysis of data from multiple sources can guide effective public health interventions. We developed MicrobeTrace to facilitate rapid public health responses by overcoming barriers to data integration and exploration in molecular epidemiology. MicrobeTrace is a web-based, client-side, JavaScript application (https://microbetrace.cdc.gov) that runs in Chromium-based browsers and remains fully operational without an internet connection. Using publicly available data, we demonstrate the analysis of viral genetic distance networks and introduce a novel approach to minimum spanning trees that simplifies results. We also illustrate the potential utility of MicrobeTrace in support of contact tracing by analyzing and displaying data from an outbreak of SARS-CoV-2 in South Korea in early 2020. MicrobeTrace is developed and actively maintained by the Centers for Disease Control and Prevention. Users can email microbetrace@cdc.gov for support. The source code is available at https://github.com/cdcgov/microbetrace.


Subject(s)
Communicable Diseases/epidemiology , Data Visualization , Molecular Epidemiology/methods , Public Health/methods , Software , Centers for Disease Control and Prevention, U.S. , Disease Outbreaks , Humans , United States
6.
Nucleic Acids Res ; 49(17): e102, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34214168

ABSTRACT

Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.


Subject(s)
Algorithms , Computational Biology/methods , Haplotypes , High-Throughput Nucleotide Sequencing/methods , RNA Virus Infections/diagnosis , RNA Viruses/genetics , COVID-19/diagnosis , COVID-19/virology , Gene Frequency , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , Humans , Mutation , Polymorphism, Single Nucleotide , RNA Virus Infections/virology , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
PLoS Negl Trop Dis ; 15(1): e0008923, 2021 01.
Article in English | MEDLINE | ID: mdl-33507996

ABSTRACT

The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.


Subject(s)
HTLV-I Infections/transmission , HTLV-I Infections/virology , Human T-lymphotropic virus 1/classification , Human T-lymphotropic virus 1/physiology , Primates/virology , Adolescent , Animals , Animals, Wild/virology , Child , Democratic Republic of the Congo , Family Characteristics , Female , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 2 , Humans , Monkey Diseases/transmission , Phylogeny , Proviruses , Public Health , Retroviridae Infections/transmission , Simian T-lymphotropic virus 1 , Surveys and Questionnaires , Viral Load , Zoonoses/transmission
8.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616640

ABSTRACT

We obtained the full-length genome of a simian foamy virus (SFV) from an infected human. This virus originated from a baboon (Papio species, strain SFVpxx_hu9406). The genome is 13,113 nucleotides long with the canonical SFV genome structure. Phylogenetically, SFVpxx_hu9406 clustered closely with SFVpan_V909/03F from a captive baboon and other Cercopithecidae SFVs.

9.
Viruses ; 12(2)2020 01 27.
Article in English | MEDLINE | ID: mdl-32012700

ABSTRACT

Tailoring public health responses to growing HIV transmission clusters depends on accurately mapping the risk network through which it spreads and identifying acute infections that represent the leading edge of cluster growth. HIV transmission links, especially those involving persons with acute HIV infection (AHI), can be difficult to uncover, or confirm during partner services investigations. We integrated molecular, epidemiologic, serologic and behavioral data to infer and evaluate transmission linkages between participants of a prospective study of AHI conducted in North Carolina, New York City and San Francisco from 2011-2013. Among the 547 participants with newly diagnosed HIV with polymerase sequences, 465 sex partners were reported, of whom only 35 (7.5%) had HIV sequences. Among these 35 contacts, 23 (65.7%) links were genetically supported and 12 (34.3%) were not. Only five links were reported between participants with AHI but none were genetically supported. In contrast, phylodynamic inference identified 102 unreported transmission links, including 12 between persons with AHI. Importantly, all putative transmission links between persons with AHI were found among large clusters with more than five members. Taken together, the presence of putative links between acute participants who did not name each other as contacts that are found only among large clusters underscores the potential for unobserved or undiagnosed intermediaries. Phylodynamics identified many more links than partner services alone and, if routinely and rapidly integrated, can illuminate transmission patterns not readily captured by partner services investigations.


Subject(s)
HIV Infections/diagnosis , HIV Infections/transmission , HIV/genetics , Phylogeny , Sexual Partners , Acute Disease/epidemiology , Adult , Disease Notification/statistics & numerical data , Female , HIV/classification , Humans , Male , Prospective Studies , Public Health , Sexual Behavior
10.
Viruses ; 11(7)2019 07 03.
Article in English | MEDLINE | ID: mdl-31277268

ABSTRACT

Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.


Subject(s)
Genome, Viral , Hylobates/virology , Monkey Diseases/virology , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Simian foamy virus/genetics , Animals , Base Sequence , Bayes Theorem , Genes, Viral , Hominidae , Humans , Phylogeny , Recombination, Genetic , Sequence Alignment , Sequence Analysis , Simian foamy virus/classification , Terminal Repeat Sequences
11.
Genome Biol Evol ; 11(6): 1630-1643, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31106820

ABSTRACT

Over 40 species of nonhuman primates host simian immunodeficiency viruses (SIVs). In natural hosts, infection is generally assumed to be nonpathogenic due to a long coevolutionary history between host and virus, although pathogenicity is difficult to study in wild nonhuman primates. We used whole-blood RNA-seq and SIV prevalence from 29 wild Ugandan red colobus (Piliocolobus tephrosceles) to assess the effects of SIV infection on host gene expression in wild, naturally SIV-infected primates. We found no evidence for chronic immune activation in infected individuals, suggesting that SIV is not immunocompromising in this species, in contrast to human immunodeficiency virus in humans. Notably, an immunosuppressive gene, CD101, was upregulated in infected individuals. This gene has not been previously described in the context of nonpathogenic SIV infection. This expands the known variation associated with SIV infection in natural hosts and may suggest a novel mechanism for tolerance of SIV infection in the Ugandan red colobus.


Subject(s)
Primates/classification , Primates/genetics , Primates/virology , Animals , Female , Gene Expression Profiling , Genome-Wide Association Study , Male , Primates/immunology , Sex Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus , Up-Regulation , Viral Load
12.
J Virol Methods ; 255: 91-97, 2018 05.
Article in English | MEDLINE | ID: mdl-29474813

ABSTRACT

Isothermal nucleic acid amplification techniques, such as reverse-transcription loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are suitable for the development of a rapid, low-cost NAT that can be used at the POC. For demonstration of utility for global use, studies are needed to validate the performance of RT-LAMP for the detection of divergent subtypes. In this study, we designed and evaluated multiplexed HIV-1 integrase RT-LAMP primers to detect subtypes within group M, along with an RNase P positive internal processing and amplification control. Using a panel of 26 viral isolates representing the major circulating subtypes, we demonstrated detection of all isolates of subtypes A1, C, D, F1, F2, G, CRF01_AE, CRF02_AG, and two unique recombinant forms (URFs). A whole blood panel created with one representative isolate of each subtype was successfully amplified with the group M HIV-1 integrase and RNase P internal control primers. The group M HIV-1 RT-LAMP assay was further evaluated on 61 plasma specimens obtained from persons from Cameroon and Uganda. The sequence-conserved group M HIV-1 RT-LAMP primers, coupled to a low-cost amplification device, may improve diagnosis of acute infection at the POC and provide timely confirmation of HIV status.


Subject(s)
HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , Multiplex Polymerase Chain Reaction , Viral Load , Humans , Molecular Typing , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity
13.
J Infect Dis ; 216(9): 1053-1062, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29029156

ABSTRACT

In January 2015, an outbreak of undiagnosed human immunodeficiency virus (HIV) infections among persons who inject drugs (PWID) was recognized in rural Indiana. By September 2016, 205 persons in this community of approximately 4400 had received a diagnosis of HIV infection. We report results of new approaches to analyzing epidemiologic and laboratory data to understand transmission during this outbreak. HIV genetic distances were calculated using the polymerase region. Networks were generated using data about reported high-risk contacts, viral genetic similarity, and their most parsimonious combinations. Sample collection dates and recency assay results were used to infer dates of infection. Epidemiologic and laboratory data each generated large and dense networks. Integration of these data revealed subgroups with epidemiologic and genetic commonalities, one of which appeared to contain the earliest infections. Predicted infection dates suggest that transmission began in 2011, underwent explosive growth in mid-2014, and slowed after the declaration of a public health emergency. Results from this phylodynamic analysis suggest that the majority of infections had likely already occurred when the investigation began and that early transmission may have been associated with sexual activity and injection drug use. Early and sustained efforts are needed to detect infections and prevent or interrupt rapid transmission within networks of uninfected PWID.


Subject(s)
Disease Outbreaks , HIV Infections/genetics , HIV Infections/transmission , HIV-1/genetics , Opiate Alkaloids/adverse effects , Substance Abuse, Intravenous/complications , Adult , Contact Tracing , Female , HIV Infections/epidemiology , Humans , Male , Middle Aged , Sexual Behavior , United States/epidemiology
14.
PLoS One ; 11(6): e0157709, 2016.
Article in English | MEDLINE | ID: mdl-27310836

ABSTRACT

Zoonotic transmission of simian retroviruses in West-Central Africa occurring in primate hunters has resulted in pandemic spread of human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). While simian foamy virus (SFV) and simian T- lymphotropic virus (STLV)-like infection were reported in healthy persons exposed to nonhuman primates (NHPs) in West-Central Africa, less is known about the distribution of these viruses in Western Africa and in hospitalized populations. We serologically screened for SFV and STLV infection using 1,529 specimens collected between 1985 and 1997 from Côte d'Ivoire patients with high HIV prevalence. PCR amplification and analysis of SFV, STLV, and HIV/SIV sequences from PBMCs was used to investigate possible simian origin of infection. We confirmed SFV antibodies in three persons (0.2%), two of whom were HIV-1-infected. SFV polymerase (pol) and LTR sequences were detected in PBMC DNA available for one HIV-infected person. Phylogenetic comparisons with new SFV sequences from African guenons showed infection likely originated from a Chlorocebus sabaeus monkey endemic to Côte d'Ivoire. 4.6% of persons were HTLV seropositive and PCR testing of PBMCs from 15 HTLV seroreactive persons identified nine with HTLV-1 and one with HTLV-2 LTR sequences. Phylogenetic analysis showed that two persons had STLV-1-like infections, seven were HTLV-1, and one was an HTLV-2 infection. 310/858 (53%), 8/858 (0.93%), and 18/858 (2.1%) were HIV-1, HIV-2, and HIV-positive but undifferentiated by serology, respectively. No SIV sequences were found in persons with HIV-2 antibodies (n = 1) or with undifferentiated HIV results (n = 7). We document SFV, STLV-1-like, and dual SFV/HIV infection in Côte d'Ivoire expanding the geographic range for zoonotic simian retrovirus transmission to West Africa. These findings highlight the need to define the public health consequences of these infections. Studying dual HIV-1/SFV infections in immunocompromised populations may provide a new opportunity to better understand SFV pathogenicity and transmissibility in humans.


Subject(s)
Deltaretrovirus Infections/diagnosis , HIV Infections/diagnosis , HIV-1/isolation & purification , Retroviridae Infections/diagnosis , Simian foamy virus/isolation & purification , Animals , Antibodies, Viral/blood , Chlorocebus aethiops , Coinfection , Cote d'Ivoire/epidemiology , DNA, Viral/genetics , Deltaretrovirus Infections/epidemiology , Deltaretrovirus Infections/virology , HIV Infections/epidemiology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-2/classification , HIV-2/genetics , HIV-2/isolation & purification , Human T-lymphotropic virus 1/classification , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/isolation & purification , Human T-lymphotropic virus 2/classification , Human T-lymphotropic virus 2/genetics , Human T-lymphotropic virus 2/isolation & purification , Humans , Leukocytes, Mononuclear/virology , Monkey Diseases/diagnosis , Monkey Diseases/epidemiology , Monkey Diseases/virology , Phylogeny , Retroviridae Infections/epidemiology , Retroviridae Infections/virology , Simian foamy virus/classification , Simian foamy virus/genetics
15.
Infect Genet Evol ; 46: 269-278, 2016 12.
Article in English | MEDLINE | ID: mdl-27221346

ABSTRACT

Increased HIV transmission in persons who inject drugs (PWIDs) has led to subepidemics and outbreaks in several countries in Europe, including Bulgaria. In this study in Bulgaria, we investigate the origin and spatiotemporal evolutionary history of HIV-1 infections in PWIDs and the distribution of antiretroviral resistance mutations and hepatitis co-infections in these populations. We analyzed HIV-1 polymerase sequences available from 117 of 359 PWIDs diagnosed with HIV/AIDS from 1999 to 2011. Of these, 50 (42.7%) were classified as CRF02_AG, 41 (35.0%) CRF01_AE, 12 (10.3%) URFs, ten (8.5%) subtype B, two (1.7%) subtype F1 and two (1.7%) CRF14_BG. Most recent common ancestor dating suggests that CRF01_AE was likely first introduced from Southeast Asia into persons reporting heterosexual infection in Bulgaria in 1992 and spread subsequently to PWIDs in the capital city of Sofia around 2003. Conversely, CRF02_AG in Bulgaria was likely first introduced into PWID from Germany in 2000 and later entered heterosexual populations around 2009. The overall prevalence of resistance mutations was 6.8% (8/117), of which 5.1% (5/117) was observed in patients on antiretroviral therapy and 1.7% (2/117) was from transmitted drug resistance mutations in drug-naïve individuals. 189/204 (92.6%) PWIDs were also co-infected with hepatitis C (HCV) and 31/183 (16.9%) were co-infected with hepatitis B (HBV). Our study provides valuable molecular epidemiological information on the introduction and distribution of the main HIV-1 subtypes, resistance mutations and hepatitis co-infections among PWIDs with HIV-1 in Bulgaria which can be used to target prevention efforts.


Subject(s)
HIV Infections , HIV-1 , Substance Abuse, Intravenous , Adolescent , Adult , Bulgaria/epidemiology , Drug Resistance, Viral/genetics , Female , Genetic Variation , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/transmission , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Hepatitis B/complications , Hepatitis B/epidemiology , Hepatitis C/complications , Hepatitis C/epidemiology , Humans , Male , Molecular Epidemiology , Phylogeny , Prevalence , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/epidemiology , Young Adult
16.
MMWR Morb Mortal Wkly Rep ; 65(5): 110-4, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26866344

ABSTRACT

In 2014, the California Department of Public Health was notified by a local health department of a diagnosis of acute human immunodeficiency virus (HIV) infection* and rectal gonorrhea in a male adult film industry performer, aged 25 years (patient A). Patient A had a 6-day history of rash, fever, and sore throat suggestive of acute retroviral syndrome at the time of examination. He was informed of his positive HIV and gonorrhea test results 6 days after his examination. Patient A had a negative HIV-1 RNA qualitative nucleic acid amplification test (NAAT)(†) 10 days before symptom onset. This investigation found that during the 22 days between the negative NAAT and being informed of his positive HIV test results, two different production companies directed patient A to have condomless sex with a total of 12 male performers. Patient A also provided contact information for five male non-work-related sexual partners during the month before and after his symptom onset. Patient A had additional partners during this time period for which no locating information was provided. Neither patient A nor any of his interviewed sexual partners reported taking HIV preexposure prophylaxis (PrEP). Contact tracing and phylogenetic analysis of HIV sequences amplified from pretreatment plasma revealed that a non-work-related partner likely infected patient A, and that patient A likely subsequently infected both a coworker during the second film production and a non-work-related partner during the interval between his negative test and receipt of his positive HIV results. Adult film performers and production companies, medical providers, and all persons at risk for HIV should be aware that testing alone is not sufficient to prevent HIV transmission. Condom use provides additional protection from HIV and sexually transmitted infections (STIs). Performers and all persons at risk for HIV infection in their professional and personal lives should discuss the use of PrEP with their medical providers.


Subject(s)
HIV Infections/transmission , Motion Pictures , Occupational Diseases/epidemiology , Adult , Humans , Male , Sexual Behavior/statistics & numerical data , United States/epidemiology , Unsafe Sex/statistics & numerical data
17.
Exp Neurol ; 275 Pt 1: 46-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26410685

ABSTRACT

Understanding the role of SCN8A in epilepsy and behavior is critical in light of recently identified human SCN8A epilepsy mutations. We have previously demonstrated that Scn8a(med) and Scn8a(med-jo) mice carrying mutations in the Scn8a gene display increased resistance to flurothyl and kainic acid-induced seizures; however, they also exhibit spontaneous absence seizures. To further investigate the relationship between altered SCN8A function and epilepsy, we introduced the SCN1A-R1648H mutation, identified in a family with generalized epilepsy with febrile seizures plus (GEFS+), into the corresponding position (R1627H) of the mouse Scn8a gene. Heterozygous R1627H mice exhibited increased resistance to some forms of pharmacologically and electrically induced seizures and the mutant Scn8a allele ameliorated the phenotype of Scn1a-R1648H mutants. Hippocampal slices from heterozygous R1627H mice displayed decreased bursting behavior compared to wild-type littermates. Paradoxically, at the homozygous level, R1627H mice did not display increased seizure resistance and were susceptible to audiogenic seizures. We furthermore observed increased hippocampal pyramidal cell excitability in heterozygous and homozygous Scn8a-R1627H mutants, and decreased interneuron excitability in heterozygous Scn8a-R1627H mutants. These results expand the phenotypes associated with disruption of the Scn8a gene and demonstrate that an Scn8a mutation can both confer seizure protection and increase seizure susceptibility.


Subject(s)
Hippocampus/physiopathology , Interneurons/metabolism , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , Pyramidal Cells/metabolism , Seizures/genetics , Acoustic Stimulation , Animals , Brain Stem/metabolism , Brain Stem/physiopathology , Disease Susceptibility , Hippocampus/metabolism , Male , Mice , Mice, Knockout , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Seizures/metabolism , Seizures/physiopathology
18.
Retrovirology ; 12: 94, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26576961

ABSTRACT

BACKGROUND: While simian foamy viruses have co-evolved with their primate hosts for millennia, most scientific studies have focused on understanding infection in Old World primates with little knowledge available on the epidemiology and natural history of SFV infection in New World primates (NWPs). To better understand the geographic and species distribution and evolutionary history of SFV in NWPs we extend our previous studies in Brazil by screening 15 genera consisting of 29 NWP species (140 monkeys total), including five genera (Brachyteles, Cacajao, Callimico, Mico, and Pithecia) not previously analyzed. Monkey blood specimens were tested using a combination of both serology and PCR to more accurately estimate prevalence and investigate transmission patterns. Sequences were phylogenetically analyzed to infer SFV and host evolutionary histories. RESULTS: The overall serologic and molecular prevalences were 42.8 and 33.6 %, respectively, with a combined assay prevalence of 55.8 %. Discordant serology and PCR results were observed for 28.5 % of the samples, indicating that both methods are currently necessary for estimating NWP SFV prevalence. SFV prevalence in sexually mature NWPs with a positive result in any of the WB or PCR assays was 51/107 (47.7 %) compared to 20/33 (61 %) for immature animals. Epidemiological analyses revealed an increase in SFV prevalence with age in captive Cebus monkeys. Phylogenetic analysis identified novel SFVs in Cacajao, Leontopithecus, and Chiropotes species that had 6-37 % nucleotide divergence to other NWP SFV. Comparison of host and SFV phylogenies showed an overall cospeciation evolutionary history with rare ancient and contemporaneous host-switching for Saimiri and Leontopithecus and Cebus xanthosternos, respectively. CONCLUSIONS: We identified novel SFV in four neotropical monkey genera in Brazil and demonstrate that SFV prevalence increases with age in Cebus monkeys. Importantly, our test results suggest that both molecular and serological screening are currently required to accurately determine infection with NWP SFV. Our study significantly expands knowledge of the epidemiology and natural history of NWP SFVs. The tools and information provided in our study will facilitate further investigation of SFV in NWPs and the potential for zoonotic infection with these viruses.


Subject(s)
Monkey Diseases , Platyrrhini , Retroviridae Infections/veterinary , Simian foamy virus/classification , Simian foamy virus/genetics , Age Factors , Animals , Brazil/epidemiology , Humans , Monkey Diseases/epidemiology , Monkey Diseases/virology , Phylogeny , Polymerase Chain Reaction , Prevalence , Retroviridae Infections/epidemiology , Retroviridae Infections/transmission , Retroviridae Infections/virology , Simian foamy virus/isolation & purification , Zoonoses/transmission , Zoonoses/virology
19.
J Antimicrob Chemother ; 70(6): 1874-80, 2015.
Article in English | MEDLINE | ID: mdl-25652746

ABSTRACT

OBJECTIVES: To determine transmitted drug resistance (TDR) and HIV-1 genetic diversity in Bulgaria. METHODS: The prevalence of TDR and HIV-1 subtypes was determined in 305/1446 (21.1%) persons newly diagnosed with HIV/AIDS from 1988 to 2011. TDR mutations (TDRMs) in protease and reverse transcriptase were defined using the WHO HIV drug mutation list. Phylogenetic analysis was used to infer polymerase (pol) genotype. RESULTS: TDRMs were found in 16/305 (5.2%) persons, 11 (3.6%) with resistance to NRTIs, 5 (1.6%) with resistance to NNRTIs and 3 (0.9%) with resistance to PIs. Dual-class TDRMs were found in three (1.0%) patients and one statistically supported cluster of TDRMs comprising two individuals with subtype B infection. TDRMs were found in 10 heterosexuals, 4 MSM and two intravenous drug users. Phylogenetic analyses identified high HIV-1 diversity consisting of mostly subtype B (44.6%), subtype C (3.3%), sub-subtype A1 (2.6%), sub-subtype F1 (2.3%), sub-subtype A-like (3.6%), subtype G (0.3%), CRF14_BG (1.6%), CRF05_DF (1.3%), CRF03_AB (0.3%) and unique recombinant forms (1.3%). CONCLUSIONS: We found a low prevalence of TDR against a background of high HIV-1 genetic diversity among antiretroviral-naive patients in Bulgaria. Our results provide baseline data on TDR and support continued surveillance of high-risk populations in Bulgaria to better target treatment and prevention efforts.


Subject(s)
Disease Transmission, Infectious , Drug Resistance, Viral , Genetic Variation , HIV Infections/transmission , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , Bulgaria/epidemiology , Female , HIV Infections/epidemiology , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , HIV-1/classification , HIV-1/isolation & purification , Humans , Male , Molecular Sequence Data , Phylogeny , Prevalence , Sequence Analysis, DNA
20.
Retrovirology ; 11: 55, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24996566

ABSTRACT

BACKGROUND: Human immunodeficiency virus (HIV) type 1 and 2, the causative agents of acquired immunodeficiency syndrome (AIDS), emerged from African non-human primates (NHPs) through zoonotic transmission of simian immunodeficiency viruses (SIV). Among African NHPs, the Cercopithecus genus contains the largest number of species known to harbor SIV. However, our understanding of the diversity and evolution of SIVs infecting this genus is limited by incomplete taxonomic and geographic sampling, particularly in East Africa. In this study, we screened blood specimens from red-tailed guenons (Cercopithecus ascanius schmidti) from Kibale National Park, Uganda, for the presence of novel SIVs using unbiased deep-sequencing. FINDINGS: We describe and characterize the first full-length SIV genomes from wild red-tailed guenons in Kibale National Park, Uganda. This new virus, tentatively named SIVrtg_Kib, was detected in five out of twelve animals and is highly divergent from other Cercopithecus SIVs as well as from previously identified SIVs infecting red-tailed guenons, thus forming a new SIV lineage. CONCLUSIONS: Our results show that the genetic diversity of SIVs infecting red-tailed guenons is greater than previously appreciated. This diversity could be the result of cross-species transmission between different guenon species or limited gene flow due to geographic separation among guenon populations.


Subject(s)
Cercopithecus/virology , Genome, Viral , Simian Immunodeficiency Virus/genetics , Animals , Simian Immunodeficiency Virus/classification , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...