Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 8: 737505, 2021.
Article in English | MEDLINE | ID: mdl-34631835

ABSTRACT

There has been a huge increase in diabetes and its associated cardiovascular complications over the last decade, predominantly in the middle- and low-income countries. In these countries, the majority live in rural areas. The Rural Epidemiology of Diabetes in South India (REDSI) study was aimed to analyze the prevalence of diabetes, cardiovascular risk factors, and its complications in rural farming and non-farming villages in Tamil Nadu, South India. A research survey on the prevalence of self-reported diabetes, cardiovascular risk factors (age, sex, obesity, hypertension, hypercholesterolemia, alcohol and tobacco use) and agricultural occupational exposure was executed among 106,111 people from 61 villages in the state of Tamil Nadu, South India, during 2015-2018. Overall, we observed a diabetes prevalence of 11.9% in rural South India. A nearly two-fold higher prevalence of diabetes was observed among the farming community (15.0%) compared to that among the non-farming population (8.7%). Logistic regression analyses revealed a strong association with agrochemical exposure (P < 0.0001) and diabetes prevalence among rural farming people. Our survey indicates a high prevalence of diabetes in rural South India particularly among the farming community. This survey in conjunction with other epidemiological and experimental studies raises the need for understanding the etiology of diabetes and other cardiovascular risk factors in rural communities.

2.
Apoptosis ; 25(7-8): 590-604, 2020 08.
Article in English | MEDLINE | ID: mdl-32591959

ABSTRACT

Chronic alcohol consumption induces myocardial damage and a type of non-ischemic cardiomyopathy termed alcoholic cardiomyopathy, where mitochondrial ultrastructural damages and suppressed fusion activity promote cardiomyocyte apoptosis. The aim of the present study is to determine the role of mitochondrial fission proteins and/or other proteins that localise on cardiac mitochondria for apoptosis upon ethanol consumption. In vivo and in vitro chronic alcohol exposure increased mitochondrial Drp1 levels but knockdown of the same did not confer cardioprotection in H9c2 cells. These cells displayed downregulated expression of MFN2 and OPA1 for Bak-mediated cytochrome c release and apoptosis. Dysregulated PTEN/AKT cell survival signal in both ethanol treated and Drp1 knockdown cells augmented oxidative stress by promoting  mitochondrial PTEN-L and MFN1 interaction. Inhibiting this interaction with VO-OHpic, a reversible PTEN inhibitor, prevented Bak insertion into the mitochondria and release of cytochrome c to cytoplasm. Thus, our study provides evidence that Drp1-mediated mitochondrial fission is dispensable for ethanol-induced cardiotoxicity and that stress signals induce mitochondrial PTEN-L accumulation for structural and functional dyshomeostasis. Our in vivo results also demonstrates the therapeutic potential of VO-OHpic for habitual alcoholics developing myocardial dysfunction.


Subject(s)
Alcoholism/genetics , Apoptosis/genetics , Cardiomyopathy, Alcoholic/genetics , Dynamins/genetics , Ethanol/pharmacology , Mitochondria, Heart/drug effects , PTEN Phosphohydrolase/genetics , Alcoholism/metabolism , Alcoholism/pathology , Animals , Apoptosis/drug effects , Cardiomyopathy, Alcoholic/metabolism , Cardiomyopathy, Alcoholic/pathology , Cell Line , Cytochromes c/genetics , Cytochromes c/metabolism , Disease Models, Animal , Dynamins/antagonists & inhibitors , Dynamins/metabolism , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Humans , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organometallic Compounds/pharmacology , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Signal Transduction , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
3.
Exp Cell Res ; 365(1): 46-56, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29481791

ABSTRACT

The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. CONCLUSION: The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling.


Subject(s)
Cardiomegaly/genetics , Cardiomegaly/pathology , Early Growth Response Protein 1/genetics , MicroRNAs/genetics , Myocytes, Cardiac/pathology , Animals , Cell Line , Down-Regulation/genetics , Promoter Regions, Genetic/genetics , Rats , Rats, Wistar , Signal Transduction/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL