Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452154

ABSTRACT

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Humans , Mice , Animals , Streptococcus pyogenes/metabolism , Streptolysins/genetics , Streptolysins/metabolism , Mice, Transgenic , Streptococcal Infections/metabolism , Bacterial Proteins/metabolism , Nasopharynx
2.
PLoS Pathog ; 18(11): e1011013, 2022 11.
Article in English | MEDLINE | ID: mdl-36449535

ABSTRACT

Streptococcus pyogenes is a globally prominent human-specific pathogen responsible for an enormous burden of human illnesses, including >600 million pharyngeal and >100 million skin infections each year. Despite intensive efforts that focus on invasive indications, much remains unknown about this bacterium in its natural state during colonization of the nasopharynx and skin. Using acute experimental infection models in HLA-transgenic mice, we evaluated how the hyaluronic acid (HA) capsule contributes to S. pyogenes MGAS8232 infection within these limited biological niches. Herein, we demonstrate that HA capsule expression promotes bacterial burden in murine nasal turbinates and skin lesions by resisting neutrophil-mediated killing. HA capsule production is encoded by the hasABC operon and compared to wildtype S. pyogenes infections, mice infected with a ΔhasA mutant exhibited over a 1000-fold CFU reduction at 48-hours post-nasal challenge, and a 10,000-fold CFU reduction from skin lesions 72-hours post-skin challenge. HA capsule expression contributed substantially to skin lesion size development following subdermal inoculations. In the absence of capsule expression, S. pyogenes revealed drastically impeded growth in whole human blood and increased susceptibility to killing by isolated neutrophils ex vivo, highlighting its important role in resisting phagocytosis. Furthermore, we establish that neutrophil depletion in mice recovered the reduced burden by the ΔhasA mutant in both the nasopharynx and skin. Together, this work confirms that the HA capsule is a key virulence determinant during acute infections by S. pyogenes and demonstrates that its predominant function is to protect S. pyogenes against neutrophil-mediated killing.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Mice , Humans , Animals , Streptococcus pyogenes/metabolism , Hyaluronic Acid/metabolism , Neutrophils/pathology , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Streptococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mice, Transgenic
3.
Microbiol Spectr ; 7(1)2019 01.
Article in English | MEDLINE | ID: mdl-30737912

ABSTRACT

Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.


Subject(s)
Bacterial Toxins/metabolism , Exotoxins/metabolism , Streptococcal Infections/pathology , Streptococcus pyogenes/immunology , Streptococcus pyogenes/pathogenicity , Superantigens/immunology , Amino Acid Sequence/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Humans , Phylogeny , Streptococcal Infections/microbiology , Streptococcus pyogenes/genetics , Superantigens/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL