Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1244159, 2023.
Article in English | MEDLINE | ID: mdl-37901240

ABSTRACT

Introduction: Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods: We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results: We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion: Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.


Subject(s)
Sulindac , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Sulindac/pharmacology , Sulindac/therapeutic use , Amyloid Precursor Protein Secretases , Triple Negative Breast Neoplasms/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Disease Models, Animal
2.
Mol Immunol ; 157: 129-141, 2023 05.
Article in English | MEDLINE | ID: mdl-37018939

ABSTRACT

Following activation, CD4 T cells undergo metabolic and transcriptional changes as they respond to external cues and differentiate into T helper (Th) cells. T cells exhibit plasticity between Th phenotypes in highly inflammatory environments, such as colitis, in which high levels of IL-6 promote plasticity between regulatory T (Treg) cells and Th17 cells. Protein Kinase C theta (PKCθ) is a T cell-specific serine/threonine kinase that promotes Th17 differentiation while negatively regulating Treg differentiation. Liver kinase B1 (LKB1), also a serine/threonine kinase and encoded by Stk11, is necessary for Treg survival and function. Stk11 can be alternatively spliced to produce a short variant (Stk11S) by transcribing a cryptic exon. However, the contribution of Stk11 splice variants to Th cell differentiation has not been previously explored. Here we show that in Th17 cells, the heterogeneous ribonucleoprotein, hnRNPLL, mediates Stk11 splicing into its short splice variant, and that Stk11S expression is diminished when Hnrnpll is depleted using siRNA knock-down approaches. We further show that PKCθ regulates hnRNPLL and, thus, Stk11S expression in Th17 cells. We provide additional evidence that exposing induced (i)Tregs to IL-6 culminates in Stk11 splicing downstream of PKCθAltogether our data reveal a yet undescribed outside-in signaling pathway initiated by IL-6, that acts through PKCθ and hnRNPLL to regulate Stk11 splice variants and facilitate Th17 cell differentiation. Furthermore, we show for the first time, that this pathway can also be initiated in developing iTregs exposed to IL-6, providing mechanistic insight into iTreg phenotypic stability and iTreg to Th17 cell plasticity.


Subject(s)
Cell Plasticity , Interleukin-6 , Protein Kinase C-theta/metabolism , Interleukin-6/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , CD4-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Protein Isoforms/metabolism , Th17 Cells/metabolism
3.
Front Immunol ; 14: 1292049, 2023.
Article in English | MEDLINE | ID: mdl-38259494

ABSTRACT

Background: Induced regulatory T cells (iTregs) are a heterogeneous population of immunosuppressive T cells with therapeutic potential. Treg cells show a range of plasticity and can acquire T effector-like capacities, as is the case for T helper 1 (Th1)-like iTregs. Thus, it is important to distinguish between functional plasticity and lineage instability. Aplastic anemia (AA) is an autoimmune disorder characterized by immune-mediated destruction of hematopoietic stem and progenitor cells in the bone marrow (BM). Th1-like 1 iTregs can be potent suppressors of aberrant Th1-mediated immune responses such as those that drive AA disease progression. Here we investigated the function of the epigenetic enzyme, protein arginine methyltransferase 5 (PRMT5), its regulation of the iTreg-destabilizing deacetylase, sirtuin 1 (Sirt1) in suppressive Th1-like iTregs, and the potential for administering Th1-like iTregs as a cell-based therapy for AA. Methods: We generated Th1-like iTregs by culturing iTregs with IL-12, then assessed their suppressive capacity, expression of iTreg suppression markers, and enzymatic activity of PRMT5 using histone symmetric arginine di-methylation (H3R2me2s) as a read out. We used ChIP sequencing on Th1 cells, iTregs, and Th1-like iTregs to identify H3R2me2s-bound genes unique to Th1-like iTregs, then validated targets using CHiP-qPCR. We knocked down PRMT5 to validate its contribution to Th1-like iTreg lineage commitment. Finally we tested the therapeutic potential of Th1-like iTregs using a Th1-mediated mouse model of AA. Results: Exposing iTregs to the Th1 cytokine, interleukin-12 (IL-12), during early events of differentiation conveyed increased suppressive function. We observed increased PRMT5 enzymatic activity, as measured by H3R2me2s, in Th1-like iTregs, which was downregulated in iTregs. Using ChIP-sequencing we discovered that H3R2me2s is abundantly bound to the Sirt1 promoter region in Th1-like iTregs to negatively regulate its expression. Furthermore, administering Th1-like iTregs to AA mice provided a survival benefit. Conclusions: Knocking down PRMT5 in Th1-like iTregs concomitantly reduced their suppressive capacity, supporting the notion that PRMT5 is important for the superior suppressive capacity and stability of Th1-like iTregs. Conclusively, therapeutic administration of Th1-like iTregs in a mouse model of AA significantly extended their survival and they may have therapeutic potential.


Subject(s)
Anemia, Aplastic , Epigenesis, Genetic , Interleukin-12 , Protein-Arginine N-Methyltransferases , Animals , Mice , Cell Differentiation/genetics , Cytokines , Disease Models, Animal , Interleukin-12/pharmacology , Sirtuin 1 , Protein-Arginine N-Methyltransferases/genetics
4.
Bioconjug Chem ; 33(3): 486-495, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35139308

ABSTRACT

Targeted delivery of chemotherapeutic drugs can improve their therapeutic efficiency by localizing their toxic effects at the diseased site. This is often achieved either by direct conjugation of drugs to antibodies targeting overexpressed receptors on cancer cells (antibody-drug conjugates/ADCs) or by conjugating antibodies to nanoparticles bearing drugs (antibody-nanoparticle conjugates/ANCs). Here, we report a platform for utilizing hinge cysteines on antigen-binding fragment (Fab') of an anti-CD4 antibody for site-specific conjugation to nanoparticles giving rise to anti-CD4 Fab'-nanoparticle conjugates (Fab'-NCs). We demonstrate a convenient route for obtaining functional anti-CD4 Fab' from full-length antibody and examine the targeted delivery efficiencies of anti-CD4 Fab'-NCs vs ANCs for selective delivery to CD4high mT-ALL cells. Our results indicate that higher avidity of full-length anti-CD4 antibody, i.e., protein alone translated to higher binding ability to CD4high mT-ALL cells in comparison with anti-CD4 Fab' alone. However, the targeted delivery efficiency of anti-CD4 Fab'-NCs was comparable to ANCs indicating that the avidity of Fab' is restored in a nanoparticle-conjugate format. Fab'-NCs are equally capable of achieving targeted drug delivery to CD4high T-cells as ANCs and are a versatile alternative to ANCs by offering site-selective modification strategy while retaining their advantages.


Subject(s)
Immunoconjugates , Nanoparticles , Antibodies, Monoclonal , CD4-Positive T-Lymphocytes , Immunoglobulin Fab Fragments
6.
Mol Ther ; 28(10): 2220-2236, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32592691

ABSTRACT

T cell receptor signaling, together with cytokine-induced signals, can differentially regulate RNA processing to influence T helper versus regulatory T cell fate. Protein kinase C family members have been shown to function in alternative splicing and RNA processing in various cell types. T cell-specific protein kinase C theta, a molecular regulator of T cell receptor downstream signaling, has been shown to phosphorylate splicing factors and affect post-transcriptional control of T cell gene expression. In this study, we explored how using a synthetic cell-penetrating peptide mimic for intracellular anti-protein kinase C theta delivery fine-tunes differentiation of induced regulatory T cells through its differential effects on RNA processing. We identified protein kinase C theta signaling as a critical modulator of two key RNA regulatory factors, heterogeneous nuclear ribonucleoprotein L (hnRNPL) and protein-l-isoaspartate O-methyltransferase-1 (PCMT1), and loss of protein kinase C theta function initiated a "switch" in post-transcriptional organization in induced regulatory T cells. More interestingly, we discovered that protein-l-isoaspartate O- methyltransferase-1 acts as an instability factor in induced regulatory T cells, by methylating the forkhead box P3 (FOXP3) promoter. Targeting protein-l-isoaspartate O-methyltransferase-1 using a cell-penetrating antibody revealed an efficient means of modulating RNA processing to confer a stable regulatory T cell phenotype.


Subject(s)
Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Protein Kinase C-theta/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Forkhead Transcription Factors/genetics , Promoter Regions, Genetic , Protein Binding , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Protein Stability , Signal Transduction
7.
Mol Ther ; 28(9): 1987-2006, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32492367

ABSTRACT

Regulatory T cells maintain immunological tolerance and dampen inflammatory responses. Administering regulatory T cells can prevent the immune-mediated tissue destruction of graft-versus-host disease, which frequently accompanies hematopoietic stem cell transfer. Neutralizing the T cell-specific kinase, protein kinase C theta, which promotes T cell effector functions and represses regulatory T cell differentiation, augments regulatory T cell immunosuppression and stability. We used a synthetic, cell-penetrating peptide mimic to deliver antibodies recognizing protein kinase C theta into primary human CD4 T cells. When differentiated ex vivo into induced regulatory T cells, treated cells expressed elevated levels of the regulatory T cell transcriptional regulator forkhead box P3, the surface-bound immune checkpoint receptor programmed death receptor-1, and pro-inflammatory interferon gamma, previously ascribed to a specific population of stable, highly suppressive human induced regulatory T cells. The in vitro suppressive capacity of these induced regulatory T cells was 10-fold greater than that of T cells differentiated without antibody delivery. When administered at the time of graft-versus-host disease induction, using a humanized mouse model, antibody-treated regulatory T cells were superior to non-treated T cells in attenuating lethal outcomes. This antibody delivery approach may overcome obstacles currently encountered using patient-derived regulatory T cells as a cell-based therapy for immune modulation.


Subject(s)
Adoptive Transfer/methods , Antibodies/immunology , Antibodies/pharmacology , Cell-Penetrating Peptides , Graft vs Host Disease/therapy , Immune Tolerance/drug effects , Intracellular Fluid/immunology , Protein Kinase C-theta/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/immunology , Humans , Immune Tolerance/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Treatment Outcome
8.
Biomacromolecules ; 21(6): 2473-2481, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32383874

ABSTRACT

CD4+ T lymphocytes play an important role in controlling many malignancies. The modulation of CD4+ T cells through immunomodulatory or cytotoxic drugs could change the course of disease progression for disorders such as autoimmunity, immunodeficiency, and cancer. Here, we demonstrate that anti-CD4 conjugated polymeric nanogels can deliver a small molecule cargo to primary CD4+ T cells and a CD4high T cell lymphoma. The antibody conjugation not only increased the uptake efficiency of the nanogel (NG) by CD4+ T cells but also decreased the non-specific uptake of the NG by CD4- lymphocytes. For T lymphoma cell lines, the mertansine-loaded conjugate displayed a dose-dependent cell growth inhibition at 17 ng/mL antibody concentration. On the other hand, antibody-drug conjugate (ADC)-type formulation of the anti-CD4 reached similar levels of cell growth inhibition only at the significantly higher concentration of 1.8 µg/mL. NG and antibody conjugates have the advantage of carrying a large payload to a defined target in a more efficient manner as it needs far less antibody to achieve a similar outcome.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Maytansine , CD4-Positive T-Lymphocytes , Nanogels
9.
Front Immunol ; 11: 735, 2020.
Article in English | MEDLINE | ID: mdl-32457739

ABSTRACT

Notch signaling provides an important cue in the mammalian developmental process. It is a key player in T cell development and function. Notch ligands such as Delta-like ligands (DLL) 1, 3, 4, and JAG1, 2 can impact Notch signaling positively or negatively, by trans-activation or cis-inhibition. Trans and cis interactions are receptor-ligand interaction on two adjacent cells and interaction on the same cell, respectively. The former sends an activation signal and the later, a signal for inhibition of Notch. However, earlier reports suggested that Notch is activated in the absence of Notch ligand-expressing APCs in a purified population of CD4 T cells. Thus, the role of ligands in Notch activation, in a purified population of CD4 T cells, remains obscure. In this study, we demonstrate that mature CD4 T cells are capable of expressing Notch ligands on their surface very early upon activation with soluble antibodies against CD3 and CD28. Moreover, signaling solely through CD28 induces Notch ligand expression and CD3 signaling inhibits ligand expression, in contrast to Notch which is induced by CD3 signaling. Additionally, by using decoys, mimicking the Notch extracellular domain, we demonstrated that DLL1, DLL4, and JAG1, expressed on the T cells, can cis-interact with the Notch receptor and inhibit activation of Notch. Thus, our data indicate a novel mechanism of the regulation of Notch ligand expression on CD4 T cells and its impact on activated Notch.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Calcium-Binding Proteins/metabolism , Jagged-1 Protein/metabolism , Receptor, Notch1/metabolism , Signal Transduction/immunology , Animals , Antibodies/pharmacology , CD28 Antigens/immunology , CD3 Complex/immunology , CD3 Complex/metabolism , Female , HEK293 Cells , Humans , Ligands , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic
10.
Mol Ther ; 27(8): 1436-1451, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31138510

ABSTRACT

Acute graft-versus-host disease is a frequent complication associated with allogeneic hematopoietic stem cell transplantation. Patients that become refractory to initial steroid treatment have a poor prognosis. apceth-201 consists of human allogeneic mesenchymal stromal cells, engineered by lentiviral transduction to express the protease inhibitor alpha-1 antitrypsin, to augment the anti-inflammatory potential of the mesenchymal stromal cells. We show that apceth-201 mesenchymal stromal cells efficiently suppress T cell proliferation and polarize macrophages to an anti-inflammatory M2 type, in vitro. To assess the in vivo efficacy of apceth-201, it was tested in two different mouse models of acute graft-versus-host disease. Control animals in a humanized model succumbed quickly to disease, whereas median survival was doubled in apceth-201-treated animals. The product was also tested in a graft-versus-host disease model system that closely mimics haploidentical hematopoietic stem cell transplantation, an approach that is now being evaluated for use in the clinic. Control animals succumbed quickly to disease, whereas treatment with apceth-201 resulted in long-term survival of 57% of the animals. Within 25 days after the second injection, clinical scores returned to baseline in responding animals, indicating complete resolution of graft-versus-host disease. These promising data have led to planning of a phase I study using apceth-201.


Subject(s)
Gene Expression , Graft vs Host Disease/etiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , alpha 1-Antitrypsin/genetics , Animals , Chemotaxis, Leukocyte/immunology , Cytokines/metabolism , Dependovirus/genetics , Disease Models, Animal , Gene Order , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Graft vs Host Disease/mortality , Graft vs Host Disease/therapy , Heterografts , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mice , Organ Specificity/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous , Treatment Outcome , alpha 1-Antitrypsin/metabolism
11.
Stem Cell Res ; 35: 101401, 2019 03.
Article in English | MEDLINE | ID: mdl-30738321

ABSTRACT

The immune-mediated tissue destruction of graft-vs-host disease (GvHD) remains a major barrier to greater use of hematopoietic stem cell transplantation (HSCT). Mesenchymal stem cells (MSCs) have intrinsic immunosuppressive qualities and are being actively investigated as a therapeutic strategy for treating GvHD. We characterized Cymerus™ MSCs, which are derived from adult, induced pluripotent stem cells (iPSCs), and show they display surface markers and tri-lineage differentiation consistent with MSCs isolated from bone marrow (BM). Administering iPSC-MSCs altered phosphorylation and cellular localization of the T cell-specific kinase, Protein Kinase C theta (PKCθ), attenuated disease severity, and prolonged survival in a humanized mouse model of GvHD. Finally, we evaluated a constellation of pro-inflammatory molecules on circulating PBMCs that correlated closely with disease progression and which may serve as biomarkers to monitor therapeutic response. Altogether, our data suggest Cymerus iPSC-MSCs offer the potential for an off-the-shelf, cell-based therapy to treat GvHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Disease Models, Animal , Female , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Graft vs Host Disease/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred NOD
12.
Toxins (Basel) ; 10(6)2018 05 30.
Article in English | MEDLINE | ID: mdl-29848968

ABSTRACT

Bibersteinia trehalosi and Mannheimia haemolytica, originally classified as Pasteurella haemolytica biotype T and biotype A, respectively, under Genus Pasteurella has now been placed under two different Genera, Bibersteinia and Mannheimia, based on DNA-DNA hybridization and 16S RNA studies. While M. haemolytica has been the predominant pathogen of pneumonia in ruminants, B. trehalosi is emerging as an important pathogen of ruminant pneumonia. Leukotoxin is the critical virulence factor of these two pathogens. While the leukotoxin of M. haemolytica has been well studied, the characterization of B. trehalosi leukotoxin has lagged behind. As the first step towards addressing this problem, we developed monoclonal antibodies (mAbs) against B. trehalosi leukotoxin and used them to characterize the leukotoxin epitopes. Two mAbs that recognized sequential epitopes on the leukotoxin were developed. One of them, AM113, neutralized B. trehalosi leukotoxin while the other, AM321, did not. The mAb AM113 revealed the existence of a neutralizing epitope on B. trehalosi leukotoxin that is not present on M. haemolytica leukotoxin. A previously developed mAb, MM601, revealed the presence of a neutralizing epitope on M. haemolytica leukotoxin that is not present on B. trehalosi leukotoxin. The mAb AM321 recognized a non-neutralizing epitope shared by the leukotoxins of B. trehalosi and M. haemolytica. The mAb AM113 should pave the way for mapping the leukotoxin-neutralizing epitope on B. trehalosi leukotoxin and the development of subunit vaccines and/or virus-vectored vaccines against this economically important respiratory pathogen of ruminants.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Exotoxins/immunology , Mannheimia haemolytica , Pasteurellaceae , Animals , Cattle , Cell Line, Tumor , Exotoxins/toxicity , Female , Mice, Inbred BALB C
13.
Toxins (Basel) ; 10(5)2018 04 25.
Article in English | MEDLINE | ID: mdl-29693562

ABSTRACT

Mannheimia (Pasteurella) haemolytica causes bronchopneumonia in domestic and wild ruminants. Leukotoxin is the critical virulence factor of M. haemolytica. Since β-hemolysis is caused by a large number of leukotoxin-positive M. haemolytica isolates, all β-hemolytic M. haemolytica isolates are considered to be leukotoxic as well. However, conflicting reports exist in literature as to the leukotoxic and hemolytic properties of M. haemolytica. One group of researchers reported their leukotoxin-deletion mutants to be hemolytic while another reported their mutants to be non-hemolytic. The objective of this study was to determine whether β-hemolysis is a reliable indicator of leukotoxicity of M. haemolytica isolates. Ninety-five isolates of M. haemolytica were first confirmed for presence of leukotoxin gene (lktA) by a leukotoxin-specific PCR assay. Culture supernatant fluids from these isolates were then tested for presence of leukotoxin protein by an ELISA, and for leukotoxic activity by a cytotoxicity assay. All isolates were tested for β-hemolysis by culture on blood agar plates. Sixty-two isolates (65%) produced leukotoxin protein while 33 isolates (35%) did not. Surprisingly, 18 of the 33 isolates (55%), that did not produce leukotoxin protein, were hemolytic. Of the 62 isolates that produced leukotoxin, 55 (89%) were leukotoxic while 7 (11%) were not. All except one of the 55 leukotoxic isolates (98%) were also hemolytic. All seven isolates that were not leukotoxic were hemolytic. Taken together, these results suggest that β-hemolysis may not be a reliable indicator of leukotoxicity of M. haemolytica isolates. Furthermore, all M. haemolytica isolates that possess lktA gene may not secrete active leukotoxin.


Subject(s)
Exotoxins , Hemolysis , Leukocytes , Mannheimia haemolytica , Virulence Factors , Animals , Cattle/microbiology , Erythrocytes , Exotoxins/genetics , Exotoxins/metabolism , Mannheimia haemolytica/genetics , Mannheimia haemolytica/isolation & purification , Mannheimia haemolytica/metabolism , Sheep/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism
14.
J Wildl Dis ; 53(3): 625-629, 2017 07.
Article in English | MEDLINE | ID: mdl-28323564

ABSTRACT

Bighornsheep ( Ovis canadensis ) are more susceptible to pneumonia caused by Mannheimia haemolytica than are domestic sheep ( Ovis aries ). Leukotoxin produced by M. haemolytica is the principal virulence factor involved in pneumonia pathogenesis. Although leukotoxin is cytolytic to all subsets of ruminant leukocytes, neutrophils are the most susceptible subset. Bighorn sheep neutrophils are four- to eightfold more susceptible to leukotoxin-induced cytolysis than are domestic sheep neutrophils. We hypothesized that the higher susceptibility of bighorn sheep neutrophils, in comparison to domestic sheep neutrophils, is due to higher expression of CD18, the receptor for leukotoxin on leukocytes. Our objective was to quantify CD18 expression on neutrophils of bighorn sheep and domestic sheep. Cell-surface CD18 expression on bighorn sheep and domestic sheep neutrophils was measured as antibody binding capacity of cells by flow cytometric analysis with two fluorochrome-conjugated anti-CD18 monoclonal antibodies (BAQ30A and HUH82A) and microspheres. Contrary to our expectations, CD18 expression was higher (P<0.0001) with monoclonal antibody BAQ30A and was higher (P<0.0002) as well with monoclonal antibody HUH80A on domestic sheep neutrophils in comparison to bighorn sheep neutrophils. These findings suggest that the higher in vitro susceptibility to leukotoxin of bighorn sheep neutrophils compared to domestic sheep neutrophils is not due to higher expression of the leukotoxin receptor CD18 on bighorn sheep neutrophils.


Subject(s)
Exotoxins , Mannheimia haemolytica/pathogenicity , Neutrophils/virology , Sheep, Bighorn/virology , Animals , Sheep , Sheep Diseases/virology , Sheep, Domestic
15.
Vaccine ; 35(12): 1630-1636, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28228321

ABSTRACT

Mannheimia haemolytica is an important pathogen of pneumonia in bighorn sheep (BHS), consistently causing 100% mortality under experimental conditions. Leukotoxin is the critical virulence factor of M. haemolytica. In a 'proof of concept' study, a vaccine containing leukotoxin and surface antigens of M. haemolytica induced 100% protection in BHS, but required multiple booster doses. Vaccination of wildlife is difficult. BHS, however, can be vaccinated at the time of transplantation, but administration of booster doses is impossible. A vaccine that does not require booster doses, therefore, is ideal for vaccination of BHS. Herpesviruses are ideal vectors for development of such a vaccine because of their ability to undergo latency with subsequent reactivation which obviates the need for booster administration. The objective of this study was to evaluate the potential of bovine herpesvirus 1 (BHV-1) as a vector encoding M. haemolytica immunogens. As the first step towards this goal, the permissiveness of BHS for BHV-1 infection was determined. BHS inoculated with wild-type BHV-1 shed the virus following infection. The lytic phase of infection was superseded by latency, and treatment of latently-infected BHS with dexamethasone reactivated the virus. A recombinant BHV-1-vectored vaccine encoding a leukotoxin-neutralizing epitope and an immuno-dominant epitope of the outer membrane protein PlpE was developed by replacing the viral glycoprotein C gene with a leukotoxin-plpE chimeric gene. Four of six BHS vaccinated with the recombinant virus developed significant leukotoxin-neutralizing antibodies at day 21 post-vaccination, while two of six BHS developed significant surface antigen antibodies at day 17 post-vaccination. These antibodies, however, were inadequate for protection of BHS against M. haemolytica challenge. These data indicate that BHV-1 is a suitable vector for immunization of BHS, but additional experimentation with the chimeric insert is necessary for development of a more efficacious vaccine.


Subject(s)
Bacterial Vaccines/immunology , Drug Carriers , Herpesvirus 1, Bovine/genetics , Mannheimia haemolytica/immunology , Pasteurellosis, Pneumonic/prevention & control , Sheep Diseases/prevention & control , Animals , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Cattle , Genetic Vectors , Herpesvirus 1, Bovine/physiology , Sheep , Sheep, Bighorn , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virus Activation , Virus Latency
16.
Proc Natl Acad Sci U S A ; 113(46): 13186-13190, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799556

ABSTRACT

Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the ß subunit of ß2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone.


Subject(s)
CD18 Antigens/genetics , Exotoxins/toxicity , Mannheimia haemolytica , Pneumonia of Calves, Enzootic/prevention & control , Amino Acid Substitution , Animals , CD18 Antigens/metabolism , Cattle/genetics , Cell Line , Disease Resistance , Fetus/metabolism , Fibroblasts/metabolism , Gene Editing , Leukocytes/metabolism , Male
17.
Vet Immunol Immunopathol ; 175: 36-41, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27269790

ABSTRACT

Mannheimia haemolytica is a very important pathogen of pneumonia in ruminants. Bighorn sheep (BHS, Ovis canadensis) are highly susceptible to M. haemolytica-caused pneumonia which has significantly contributed to the drastic decline of bighorn sheep population in North America. Pneumonia outbreaks in wild BHS can cause mortality as high as 90%. Leukotoxin is the critical virulence factor of M. haemolytica. In a 'proof of concept' study, an experimental vaccine containing leukotoxin and surface antigens of M. haemolytica developed by us induced 100% protection of BHS, but required multiple booster injections. Vaccination of wild BHS is difficult. But they can be vaccinated at the time of transplantation into a new habitat. Administration of booster doses, however, is impossible. Therefore, a vaccine that does not require booster doses is necessary to immunize BHS against M. haemolytica pneumonia. Herpesviruses are ideal vectors for development of such a vaccine because of their ability to undergo latency with subsequent reactivation. As the first step towards developing a herpesvirus-vectored vaccine, we constructed a chimeric protein comprising the leukotoxin-neutralizing epitopes and the immuno-dominant epitopes of the outer membrane protein PlpE. The chimeric protein was efficiently expressed in primary BHS lung cells. The immunogenicity of the chimeric protein was evaluated in mice before inoculating BHS. Mice immunized with the chimeric protein developed antibodies against M. haemolytica leukotoxin and PlpE. More importantly, the anti-leukotoxin antibodies effectively neutralized leukotoxin-induced cytotoxicity. Taken together, these results represent the successful completion of the first step towards developing a herpesvirus-vectored vaccine for controlling M. haemolytica pneumonia in BHS, and possibly other ruminants.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Exotoxins/immunology , Mannheimia haemolytica/immunology , Mannheimia haemolytica/pathogenicity , Sheep Diseases/immunology , Sheep Diseases/microbiology , Sheep, Bighorn/immunology , Sheep, Bighorn/microbiology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibody Specificity , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Exotoxins/chemistry , Exotoxins/genetics , Female , Genetic Vectors , Herpesviridae/genetics , Mannheimia haemolytica/genetics , Mice , Mice, Inbred BALB C , Pasteurellosis, Pneumonic/immunology , Pasteurellosis, Pneumonic/microbiology , Pasteurellosis, Pneumonic/prevention & control , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Sheep , Sheep Diseases/prevention & control , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
18.
J Wildl Dis ; 52(3): 616-20, 2016 07.
Article in English | MEDLINE | ID: mdl-27224212

ABSTRACT

Fusobacterium necrophorum has been detected in pneumonic bighorn sheep (BHS; Ovis canadensis ) lungs, in addition to the aerobic respiratory pathogens Mannheimia haemolytica , Bibersteinia trehalosi , Pasteurella multocida , and Mycoplasma ovipneumoniae . Similar to M. haemolytica , F. necrophorum produces a leukotoxin. Leukotoxin-induced lysis and degranulation of polymorphonuclear leukocytes (PMNs) and macrophages are responsible for acute inflammation and lung tissue damage characteristic of M. haemolytica -caused pneumonia. As one approach in elucidating the role of F. necrophorum in BHS pneumonia, we determined the frequency of the presence of F. necrophorum in archived pneumonic BHS lung tissues, and susceptibility of BHS leukocytes to F. necrophorum leukotoxin. A species-specific PCR assay detected F. necrophorum in 37% of pneumonic BHS lung tissues (total tested n=70). Sequences of PCR amplicons were similar to the less virulent F. necrophorum subsp. funduliforme. Fusobacterium necrophorum leukotoxin exhibited cytotoxicity to BHS PMNs and peripheral blood mononuclear cells. As with the M. haemolytica leukotoxin, F. necrophorum leukotoxin was more toxic to BHS PMNs than domestic sheep PMNs. It is likely that F. necrophorum enters the lungs after M. haemolytica and other aerobic respiratory pathogens enter the lungs and initiate tissue damage, thereby creating a microenvironment that is conducive for anaerobic bacterial growth. In summary, Fusobacterium leukotoxin is highly toxic for BHS leukocytes; however, based on the PCR findings, it is unlikely to play a direct role in the development of BHS pneumonia.


Subject(s)
Fusobacterium necrophorum/pathogenicity , Pneumonia/veterinary , Sheep Diseases , Sheep, Bighorn/microbiology , Animals , Leukocytes, Mononuclear , Mannheimia haemolytica , Sheep , United States
19.
Infect Immun ; 83(10): 3982-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26216418

ABSTRACT

Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin.


Subject(s)
Exotoxins/toxicity , Mannheimia haemolytica/metabolism , Pasteurellosis, Pneumonic/microbiology , Sheep Diseases/microbiology , Acylation , Animals , Exotoxins/metabolism , Flow Cytometry , Lung/immunology , Lung/microbiology , Neutrophils/immunology , Pasteurellosis, Pneumonic/immunology , Sheep , Sheep Diseases/immunology , Sheep, Bighorn
20.
PLoS One ; 9(10): e110039, 2014.
Article in English | MEDLINE | ID: mdl-25302992

ABSTRACT

BACKGROUND: Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis). The cause of this disease has been a subject of debate. Leukotoxin expressing Mannheimia haemolytica and Bibersteinia trehalosi produce acute pneumonia after experimental challenge but are infrequently isolated from animals in natural outbreaks. Mycoplasma ovipneumoniae, epidemiologically implicated in naturally occurring outbreaks, has received little experimental evaluation as a primary agent of bighorn sheep pneumonia. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, bighorn sheep housed in multiple pens 7.6 to 12 m apart were exposed to M. ovipneumoniae by introduction of a single infected or challenged animal to a single pen. Respiratory disease was monitored by observation of clinical signs and confirmed by necropsy. Bacterial involvement in the pneumonic lungs was evaluated by conventional aerobic bacteriology and by culture-independent methods. In both experiments the challenge strain of M. ovipneumoniae was transmitted to all animals both within and between pens and all infected bighorn sheep developed bronchopneumonia. In six bighorn sheep in which the disease was allowed to run its course, three died with bronchopneumonia 34, 65, and 109 days after M. ovipneumoniae introduction. Diverse bacterial populations, predominantly including multiple obligate anaerobic species, were present in pneumonic lung tissues at necropsy. CONCLUSIONS/SIGNIFICANCE: Exposure to a single M. ovipneumoniae infected animal resulted in transmission of infection to all bighorn sheep both within the pen and in adjacent pens, and all infected sheep developed bronchopneumonia. The epidemiologic, pathologic and microbiologic findings in these experimental animals resembled those seen in naturally occurring pneumonia outbreaks in free ranging bighorn sheep.


Subject(s)
Mycoplasma ovipneumoniae , Pneumonia/veterinary , Sheep Diseases/epidemiology , Animals , Lung/microbiology , Lung/pathology , Mycoplasma ovipneumoniae/classification , Mycoplasma ovipneumoniae/genetics , RNA, Ribosomal, 16S/genetics , Sheep , Sheep Diseases/diagnosis , Sheep Diseases/transmission , Sheep, Bighorn
SELECTION OF CITATIONS
SEARCH DETAIL