Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1276864, 2023.
Article in English | MEDLINE | ID: mdl-38152288

ABSTRACT

Introduction: Given the possibility of higher ground temperatures in the future, the pursuit of a cushioning material that can effectively reduce sports injuries during exercise, particularly one that retains its properties at elevated temperatures, has emerged as a serious concern. Methods: A total of 18 man recreational runners were recruited from Ningbo University and local clubs for participation in this study. Frequency analysis was employed to investigate whether there is a distinction between non-Newtonian (NN) shoes and ethylene vinyl acetate (EVA) shoes. Results: The outcomes indicated that the utilization of NN shoes furnished participants with superior cushioning when engaging in a 90° cutting maneuver subsequent to an outdoor exercise, as opposed to the EVA material. Specifically, participants wearing NN shoes exhibited significantly lower peak resultant acceleration (p = 0.022) and power spectral density (p = 0.010) values at the distal tibia compared to those wearing EVA shoes. Moreover, shock attenuation was significantly greater in subjects wearing NN shoes (p = 0.023) in comparison to EVA shoes. Performing 90° cutting maneuver in NN shoes resulted in significantly lower peak ground reaction force (p = 0.010), vertical average loading rate (p < 0.010), and vertical instantaneous loading rate (p = 0.030) values compared to performing the same maneuvers in EVA shoes. Conclusion: The study found that the PRA and PSD of the distal tibia in NN footwear were significantly lower compared to EVA footwear. Additionally, participants exhibited more positive SA while using NN footwear compared to EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising results support the capability of NN footwear to offer additional reductions in potential injury risk to runners, especially in high-temperature conditions.

2.
Front Bioeng Biotechnol ; 11: 1192524, 2023.
Article in English | MEDLINE | ID: mdl-37539437

ABSTRACT

This study provided a comprehensive updated review of the biological aspects of children foot morphology across different ages, sex, and weight, aiming to reveal the patterns of normal and pathological changes in children feet during growth and development. This review article comprised 25 papers in total that satisfied the screening standards. The aim was to investigate how weight changes, age and sex affect foot type, and gain a deeper understanding of the prevalent foot deformities that occur during children growth. Three different foot morphological conditions were discussed, specifically including the effect of sex and age differences, the effect of weight changes, and abnormal foot morphologies commonly documented during growth. This review found that sex, age, and weight changes would affect foot size, bony structure, foot posture, and plantar pressures during child growth. As a result of this biological nature, the children's feet generally exhibit neutral and internally rotated foot postures, which frequently lead to abnormal foot morphologies (e.g., flat foot, pronated foot, etc.). In the future, attention shall be paid to the causal factors leading to specific foot morphologies during the growth and development of children. However, sufficient evidence could not be provided due to a relatively short period of investigation and non-uniformed research methodology in the current literature. A more comprehensive and in-depth exploration is recommended to provide scientific evidence for the discovery of children foot development and personalized growth pattern.

3.
Antiviral Res ; 215: 105621, 2023 07.
Article in English | MEDLINE | ID: mdl-37156267

ABSTRACT

Group B Coxsackieviruses (CVB) are non-enveloped small RNA viruses in the genus Enterovirus, family Picornaviridae. CVB infection causes diverse conditions from common cold to myocarditis, encephalitis, and pancreatitis. No specific antiviral is available for the treatment of CVB infection. Anisomycin, a pyrrolidine-containing antibiotic and translation inhibitor, was reported to inhibit the replication of some picornaviruses. However, it is unknown if anisomycin can act as an antiviral against CVB infection. Here we observed that anisomycin showed potent inhibition on CVB type 3 (CVB3) infection with negligible cytotoxicity when applied at the early stage of virus infection. Mice infected with CVB3 showed markedly alleviated myocarditis with reduced viral replication. We found that CVB3 infection significantly increased the transcription of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1). CVB3 replication was suppressed by EEF1A1 knockdown, while elevated by EEF1A1 overexpression. Similar to the effect of CVB3 infection, EEF1A1 transcription was increased in response to anisomycin treatment. However, eEF1A1 protein level was decreased with anisomycin treatment in a dose-dependent manner in CVB3-infected cells. Moreover, anisomycin promoted eEF1A1 degradation, which was inhibited by the treatment of chloroquine but not MG132. We demonstrated that eEF1A1 interacted with the heat shock cognate protein 70 (HSP70), and eEF1A1 degradation was inhibited by LAMP2A knockdown, implicating that eEF1A1 is degraded through chaperone-mediated autophagy. Taken together, we demonstrated that anisomycin, which inhibits CVB replication through promoting the lysosomal degradation of eEF1A1, could be a potential antiviral candidate for the treatment of CVB infection.


Subject(s)
Coxsackievirus Infections , Myocarditis , Mice , Animals , Humans , Anisomycin/pharmacology , Peptide Elongation Factor 1/metabolism , Peptide Elongation Factor 1/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Enterovirus B, Human , Lysosomes/metabolism , Virus Replication , Coxsackievirus Infections/drug therapy , HeLa Cells
4.
ACS Omega ; 7(49): 45174-45180, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530266

ABSTRACT

Metal chalcogenides are a promising material for novel physical research and nanoelectronic device applications. Here, we systematically investigate the crystal structure and electronic properties of AlSe alloys on Al(111) using scanning tunneling microscopy, angle-resolved photoelectron spectrometry, and first-principle calculations. We reveal that the AlSe surface alloy possesses a closed-packed atomic structure. The AlSe surface alloy comprises two atomic sublayers (Se sublayer and Al sublayer) with a height difference of 1.16 Å. Our results indicate that the AlSe alloy hosts two hole-like bands, which are mainly derived from the in-plane orbital of AlSe (p x and p y ). These two bands located at about -2.22 ±0.01 eV around the Gamma point, far below the Fermi level, distinguished from other metal chalcogenides and binary alloys. AlSe alloys have the advantages of large-scale atomic flat terraces and a wide band gap, appropriate to serve as an interface layer for two-dimensional materials. Meanwhile, our results provide implications for related Al-chalcogen interfaces.

5.
Heliyon ; 8(10): e10940, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247144

ABSTRACT

Finite element modelling has become an efficient tool for an in-depth understanding of the foot, footwear biomechanics and footwear optimization. The aim of this paper was to provide an updated overview in relation to the footwear finite element (FE) analysis published since 2000. The paper will attempt to outline the main challenges and research gaps that need confronting in the further development of realistic and accurate models for clinical and industrial applications. English databases of the Web of Science and PubMed were used to search ('finite element' OR 'FEA' OR 'computational model') AND ('shoe' OR 'footwear') until 16 December 2021. Articles that conducted FE analyses on the whole foot and footwear structures were included in this review. Twelve articles met the eligibility criteria, and were grouped into three categories for further analysis, (1) finite element modelling of the foot and high-heeled shoes; (2) finite element modelling of the foot and boot; (3) finite element modelling of the foot and sports shoe. Even though most of the existing foot-shoe FE analyses were performed under certain simplifications and assumptions, they have provided essential contributions in identifying the mechanical response of the foot in casual or athletic footwear. Further to this, the results have provided information in relation to optimizing footwear design to enhance functional performance. Nevertheless, further simulations still present several challenges, including reliable data information for geometry reconstruction, the balance between accurate details and computational cost, accurate representations of material properties, realistic boundary and loading conditions, and thorough model validation. In addition, some research gaps in terms of the coverage of footwear design, the consideration of insole/orthosis and socks, and the internal and external validity of the FE design should be fully covered.

6.
Bioengineering (Basel) ; 9(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36134957

ABSTRACT

There are still few portable methods for monitoring lower limb joint coordination during the cutting movements (CM). This study aims to obtain the relevant motion biomechanical parameters of the lower limb joints at 90°, 135°, and 180° CM by collecting IMU data of the human lower limbs, and utilizing the Long Short-Term Memory (LSTM) deep neural-network framework to predict the coordination variability of selected lower extremity couplings at the three CM directions. There was a significant (p < 0.001) difference between the three couplings during the swing, especially at 90° vs the other directions. At 135° and 180°, t13-he coordination variability of couplings was significantly greater than at 90° (p < 0.001). It is important to note that the coordination variability of Hip rotation/Knee flexion-extension was significantly higher at 90° than at 180° (p < 0.001). By the LSTM, the CM coordination variability for 90° (CMC = 0.99063, RMSE = 0.02358), 135° (CMC = 0.99018, RMSE = 0.02465) and 180° (CMC = 0.99485, RMSE = 0.01771) were accurately predicted. The predictive model could be used as a reliable tool for predicting the coordination variability of different CM directions in patients or athletes and real-world open scenarios using inertial sensors.

7.
Front Physiol ; 13: 907016, 2022.
Article in English | MEDLINE | ID: mdl-36060684

ABSTRACT

Background: Running shoes with carbon plates have been identified to have positive effects on improving running performance from a biomechanical perspective. However, the specific difference between the effects of carbon plates with different longitudinal bending stiffness (LBS)on biomechanical characteristics and muscular mechanics of lower limbs in adolescent runners remains unclear. This study aimed to identify the difference in biomechanical characteristics and muscular mechanics in lower limbs during running stance phases between wearing shoes with low longitudinal bending stiffness (Llbs) and high longitudinal bending stiffness (Hlbs) carbon plates in adolescent runners. Methods: 10 male adolescent runners with a habit of daily running exercise (age: 13.5 ± 0.6 years; height: 166.3 ± 1.9 cm; bodyweight: 50.8 ± 3.1 kg; foot length: 25.4 ± 0.2 cm) were recruited and asked to conduct two times of tests by wearing shoes with Llbs and Hlbs carbon plates in a randomized order. Paired t-test and statistical parametric mapping (SPM) analysis were used to identify the difference in biomechanical characteristics and muscular mechanics in lower limbs during running stance phases. Result: Under the condition of wearing shoes with Hlbs, the time of foot contact significantly increased, whereas the range of motion (ROM) of hip and metatarsophalangeal (MTP) in the sagittal plane significantly reduced as well as the peak moment of ankle joint in the sagittal plane. The activations of vastus medialis, vastus lateralis, flexor digitorum brevis (flex dig brevis), and flexor hallucis longus (flex hall long) significantly increased under the condition of wearing shoes with Hlbs. According to the results of the SPM analysis, the joint angles (hip, ankle, and MTP), the net joint moments (knee, ankle, and MTP), and the muscle forces (gluteus maximus and tibialis anterior) were significant difference during the running stance phase between conditions of wearing shoes with Hlbs and Llbs. Conclusion: Running shoes with Llb carbon plates are appropriate for adolescent runners due to the advantages of biomechanical characteristics and muscular mechanics.

8.
Diagnostics (Basel) ; 12(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35741281

ABSTRACT

The aim of this study was to assess the stiffness of each lower limb joint in healthy persons walking at varying speeds when fatigued. The study included 24 subjects (all male; age: 28.16 ± 7.10 years; height: 1.75 ± 0.04 m; weight: 70.62 ± 4.70 kg). A Vicon three-dimensional analysis system and a force plate were used to collect lower extremity kinematic and kinetic data from the participants before and after walking training under various walking situations. Least-squares linear regression equations were utilized to evaluate joint stiffness during single-leg support. Three velocities significantly affected the stiffness of the knee and hip joint (p < 0.001), with a positive correlation. However, ankle joint stiffness was significantly lower only at maximum speed (p < 0.001). Hip stiffness was significantly higher after walking training than that before training (p < 0.001). In contrast, knee stiffness after training was significantly lower than pre-training stiffness in the same walking condition (p < 0.001). Ankle stiffness differed only at maximum speed, and it was significantly higher than pre-training stiffness (p < 0.001). Walking fatigue appeared to change the mechanical properties of the joint. Remarkably, at the maximum walking velocity in exhaustion, when the load on the hip joint was significantly increased, the knee joint's stiffness decreased, possibly leading to joint instability that results in exercise injury.

9.
Biochem Biophys Res Commun ; 605: 119-126, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35316762

ABSTRACT

Myocardial ischemia/reperfusion (I/R) injury poses a significant threat to human health. High level of reactive oxygen species (ROS) and calcium overload are the foremost causes of myocardial damage in I/R. Sulforaphane (SFN) is known for its promising antioxidant effect. Whether or not SFN has myocardial protective effect against I/R is largely unknown. This study aimed to investigate if SFN can protect myocardium from I/R injury. We found that mice or cells pre-treated with SFN showed improved cardiac functions and cell survival. SFN treatment inhibited the production of inflammatory cytokines and the increase of intracellular calcium induced by hypoxia-reperfusion (H/R), while mitochondria membrane potential was effectively maintained. Transcriptome analysis showed that CaMKIIδ expression was down-regulated by SFN treatment in I/R myocardium, while CaMKIIN2, the inhibitor of CaMKII, was upregulated. Knockdown of CaMKIIN2 not only led to increased level of total CaMKIIδ and the phosphorylated CaMKIIδ but also blocked the pro-survival effect of SFN for H/R cells. Moreover, CaMKIIN2 overexpression was sufficient to suppress CaMKIIδ activation and improve cell survival under H/R. Taken together, this study demonstrated that SFN exerts cardioprotective effect toward I/R injury through upregulating CaMKIIN2 and down-regulating CaMKIIδ.


Subject(s)
Myocardial Reperfusion Injury , Animals , Apoptosis/physiology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Isothiocyanates , Mice , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...