Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 30(2): 200-215, 2023 02.
Article in English | MEDLINE | ID: mdl-36646905

ABSTRACT

Poly(A)-tail-mediated post-transcriptional regulation of maternal mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is known about poly(A) tail dynamics during the human OET. Here, we show that poly(A) tail length and internal non-A residues are highly dynamic during the human OET, using poly(A)-inclusive RNA isoform sequencing (PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: after deadenylation or partial degradation into 3'-UTRs, they are re-polyadenylated to produce polyadenylated degradation intermediates, coinciding with massive incorporation of non-A residues, particularly internal long consecutive U residues, into the newly synthesized poly(A) tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U residues, BTG4-mediated deadenylation produces substrates for maternal mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal G residues. The maternal mRNA remodeling is further confirmed using PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the first cleavage of human embryos. Together, these findings broaden our understanding of the post-transcriptional regulation of maternal mRNAs during the human OET.


Subject(s)
Oocytes , RNA, Messenger, Stored , Humans , RNA, Messenger, Stored/metabolism , Oocytes/metabolism , RNA, Messenger/metabolism , Gene Expression Regulation , Polyadenylation , Poly A/chemistry
2.
Front Aging Neurosci ; 13: 742176, 2021.
Article in English | MEDLINE | ID: mdl-34819847

ABSTRACT

The detailed characteristics of neuronal cell populations in Alzheimer's disease (AD) using single-cell RNA sequencing have not been fully elucidated. To explore the characterization of neuronal cell populations in AD, this study utilized the publicly available single-nucleus RNA-sequencing datasets in the transgenic model of 5X familial Alzheimer's disease (5XFAD) and wild-type mice to reveal an AD-associated excitatory neuron population (C3:Ex.Neuron). The relative abundance of C3:Ex.Neuron increased at 1.5 months and peaked at 4.7 months in AD mice. Functional pathways analyses showed that the pathways positively related to neurodegenerative disease progression were downregulated in the C3:Ex.Neuron at 1.5 months in AD mice. Based on the differentially expressed genes among the C3:Ex.Neuron, four subtypes (C3.1-4) were identified, which exhibited distinct abundance regulatory patterns during the development of AD. Among these subtypes, the C3.1 neurons [marked by netrin G1 (Ntng1)] exhibited a similar regulatory pattern as the C3:Ex.Neuron in abundance during the development of AD. In addition, our gene set variation analysis (GSEA) showed that the C3.1 neurons, instead of other subtypes of the C3:Ex.Neuron, possessed downregulated AD pathways at an early stage (1.5 months) of AD mice. Collectively, our results identified a previously unidentified subset of excitatory neurons and provide a potential application of these neurons to modulate the disease susceptibility.

3.
BMC Biol ; 19(1): 192, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493285

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are important regulators in tumor progression. However, their biological functions and underlying mechanisms in hypoxia adaptation remain largely unclear. RESULTS: Here, we established a correlation between a Chr3q29-derived lncRNA gene and tongue squamous carcinoma (TSCC) by genome-wide analyses. Using RACE, we determined that two novel variants of this lncRNA gene are generated in TSCC, namely LINC00887_TSCC_short (887S) and LINC00887_TSCC_long (887L). RNA-sequencing in 887S or 887L loss-of-function cells identified their common downstream target as Carbonic Anhydrase IX (CA9), a gene known to be upregulated by hypoxia during tumor progression. Mechanistically, our results showed that the hypoxia-augmented 887S and constitutively expressed 887L functioned in opposite directions on tumor progression through the common target CA9. Upon normoxia, 887S and 887L interacted. Upon hypoxia, the two variants were separated. Each RNA recognized and bound to their responsive DNA cis-acting elements on CA9 promoter: 887L activated CA9's transcription through recruiting HIF1α, while 887S suppressed CA9 through DNMT1-mediated DNA methylation. CONCLUSIONS: We provided hypoxia-permitted functions of two antagonistic lncRNA variants to fine control the hypoxia adaptation through CA9.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , Carbonic Anhydrase IX/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Genome-Wide Association Study , Humans , Hypoxia/genetics , RNA, Long Noncoding/genetics , Tongue , Tongue Neoplasms/genetics
4.
PLoS Biol ; 19(6): e3001297, 2021 06.
Article in English | MEDLINE | ID: mdl-34111112

ABSTRACT

Recent studies have shown that long noncoding RNAs (lncRNAs) are critical regulators in the central nervous system (CNS). However, their roles in the cerebellum are currently unclear. In this work, we identified the isoform 204 of lncRNA Gm2694 (designated as lncRNA-Promoting Methylation (lncRNA-PM)) is highly expressed in the cerebellum and derived from the antisense strand of the upstream region of Cerebellin-1 (Cbln1), a well-known critical cerebellar synaptic organizer. LncRNA-PM exhibits similar spatiotemporal expression pattern as Cbln1 in the postnatal mouse cerebellum and activates the transcription of Cbln1 through Pax6/Mll1-mediated H3K4me3. In mouse cerebellum, lncRNA-PM, Pax6/Mll1, and H3K4me3 are all associated with the regulatory regions of Cbln1. Knockdown of lncRNA-PM in cerebellum causes deficiencies in Cbln1 expression, cerebellar synaptic integrity, and motor function. Together, our work reveals an lncRNA-mediated transcriptional activation of Cbln1 through Pax6-Mll1-H3K4me3 and provides novel insights of the essential roles of lncRNA in the cerebellum.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Nerve Tissue Proteins/metabolism , PAX6 Transcription Factor/metabolism , Protein Precursors/metabolism , RNA, Long Noncoding/metabolism , Synapses/metabolism , Alternative Splicing/genetics , Cerebellum/metabolism , Gene Expression Regulation , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Motor Activity , Myeloid-Lymphoid Leukemia Protein/genetics , Neurons/metabolism , Presynaptic Terminals/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Long Noncoding/genetics , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...