Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 443(Pt B): 130350, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36444061

ABSTRACT

High-temperature pyrolysis of waste tires is a promising method to produce high-quality carbon black. In this study, carbon black formation characteristics were investigated during tire pyrolysis at 1000-1300 °C with residence times of < 1 s, 1-2 s, and 2-4 s. It is shown that with temperature increasing from 1000 °C to 1300 °C carbon black yield was increased from 10% to 27% with residence times of 2-4 s. Carbon black exhibited a core-shell nanostructure over 1100 °C and the graphitization degree was promoted with the temperature and residence time. While the mean particle diameter decreased with the temperature to 69 nm at 1300 °C and further increased by residence time. The molecular-level evolution from tire to initial carbon black was further revealed by reactive force field molecular dynamics simulations. Light oil, gas, and radicals were transformed to initial cyclic molecules and long carbon chains via carbon-addition-hydrogen-migration, H-abstraction-C2H2-addition, and radical-chain reactions, subsequently forming PAHs. The coupling of PAHs aliphatic side chains formed large graphene layers that gradually bent to fullerene-like cores and generated incipient carbon black. The process mechanism from volatiles evolution to carbon black was proposed, which may be helpful for obtaining high-quality carbon black from high-temperature pyrolysis of waste tires.

2.
Huan Jing Ke Xue ; 40(11): 4987-4995, 2019 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-31854565

ABSTRACT

To study the potential application characteristics of biochar as a phosphate adsorbent, nano-MgO-biochar was prepared by rapid pyrolysis of a mixture of MgO and lotus shells. The physicochemical properties were characterized by XRD, BET, SEM, and TEM, and adsorption experiments were conducted. The results showed that MgO was mainly supported on the surface of carbon in the form of flakes and granules, which increased the adsorption active site, and the adsorption amount of MgO-biochar MBC3 was 14 times higher than that of biochar MBC1 without MgO. The adsorption capacity of MBC9, which was prepared by rapid pyrolysis under 10% CO2 atmosphere, was further increased 16 times higher than that of MBC1. The adsorption kinetics followed a pseudo-second-order model, which indicated the adsorption of phosphate on MgO-biochar was dominated by chemical adsorption. According to the Langmuir equation, the maximum adsorption capacity of MBC3 and MBC9 could reach 283.26 mg·g-1 and 297.96 mg·g-1, respectively. MgO-biochar is a high-efficiency phosphate adsorbent, which can be used to control the eutrophication of water.

3.
Bioresour Technol ; 274: 25-32, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30500760

ABSTRACT

The effects of wood vinegar (WVG) on extracellular polymeric substances (EPS), and flocculation, sedimentation and dewatering performances of activated sludge were investigated in sequencing batch reactor (SBR) process. Results showed that polysaccharide (PS) and DNA were accounted for the largest and smallest proportion of EPS, respectively. With WVG injection, productions of soluble EPS (S-EPS), loosely bound EPS (LB-EPS), tightly bound EPS (TB-EPS), protein (PN), PS, and DNA were significantly increased. The optimal WVG concentration was found as 4 µl/l. The effects of WVG on different types of EPS followed an order of LB-EPS > TB-EPS > S-EPS. According to batch and long-term SBR operations, WVG could increase the biomass amount of activated sludge, which was beneficial to improve sewage treatment efficiencies. However, WVG showed negative impact on flocculation, sedimentation, and dewatering performance of activated sludge.


Subject(s)
Acetic Acid/metabolism , Biomass , Extracellular Polymeric Substance Matrix/metabolism , Methanol/metabolism , Sewage , DNA/biosynthesis , Flocculation , Polysaccharides/biosynthesis , Pyrolysis
4.
Sheng Wu Gong Cheng Xue Bao ; 31(10): 1492-500, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26964338

ABSTRACT

To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.


Subject(s)
Charcoal , Furaldehyde/chemistry , Oryza , Adsorption , Biomass , Carbon Dioxide , Nitrogen , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL