Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Photochem Photobiol B ; 255: 112920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669742

ABSTRACT

As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Quantum Dots/chemistry , Quantum Dots/toxicity , Humans , Animals
2.
Colloids Surf B Biointerfaces ; 234: 113724, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183870

ABSTRACT

Both ursolic acid (UA) and sorafenib (Sora) have been generally utilized in cancer treatment, and the combination of the two has also shown a good anti-tumor effect. However, single-agent therapy for Hepatocellular carcinoma (HCC) has the disadvantages of multi-drug resistance, poor water solubility and low bioavailability, and the application of traditional nanocarrier materials is limited due to their low drug loading and low carrier-related toxicity. Therefore, we prepared US NPs with different proportions of UA and Sora by solvent exchange method for achieving synergistic HCC therapy. US NPs had suitable particle size, good dispersibility and storage stability, which synergistically inhibited the proliferation of HepG2 cells, SMMC7721 cells and H22 cells. In addition, we also proved that US NPs were able to suppress the migration of HepG2 cells and SMMC7721 cells and reduce the adhesion ability and colony formation ability of these cells. According to the results, US NPs could degrade the membrane potential of mitochondrial, participate in cell apoptosis, and synergistically induce autophagy. Collectively, the carrier-free US NPs provide new strategies for HCC treatment and new ideas for the development of novel nano-drug delivery systems containing UA and Sora.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/pathology , Ursolic Acid , Pharmaceutical Preparations , Liver Neoplasms/pathology , Cell Line, Tumor
3.
J Colloid Interface Sci ; 660: 257-276, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244494

ABSTRACT

The heterogeneity of hepatocellular carcinoma (HCC) and the complexity of the tumor microenvironment (TME) pose challenges to efficient drug delivery and the antitumor efficacy of combined or synergistic therapies. Herein, a metal-coordinated carrier-free nanodrug (named as USFe3+ LA NPs) was developed for ferroptosis-mediated multimodal synergistic anti-HCC. Natural product ursolic acid (UA) was incorporated to enhance the sensitivity of tumor cells to sorafenib (SRF). Surface decoration of cell penetration peptide and epithelial cell adhesion molecule aptamer facilitated the uptake of USFe3+ LA NPs by HepG2 cells. Meanwhile, Fe3+ ions could react with intracellular hydrogen peroxide, generating toxic hydroxyl radical (·OH) for chemodynamical therapy (CDT) and amplified ferroptosis by cystine/glutamate antiporter system (System Xc-), which promoted the consumption of glutathione (GSH) and inhibited the expression of glutathione peroxidase 4 (GPX4). Notably, these all-in-one nanodrugs could inhibit tumor metastasis and induced immunogenic cell death (ICD). Last but not least, the nanodrugs demonstrated favorable biocompatibility, augmenting the immune response against the programmed death-ligand 1 (PD-L1) by increasing cytotoxic T cell infiltration. In vivo studies revealed significant suppression of tumor growth and distant metastasis. Overall, our work introduced a novel strategy for applications of metal-coordinated co-assembled carrier-free nano-delivery system in HCC combination therapy, especially in the realms of cancer metastasis prevention and immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Pharmaceutical Preparations , Liver Neoplasms/drug therapy , Combined Modality Therapy , Cell Line, Tumor , Tumor Microenvironment
4.
J Colloid Interface Sci ; 656: 177-188, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37989051

ABSTRACT

The effectiveness of chemotherapeutic agents for hepatocellular carcinoma (HCC) is unsatisfactory because of tumor heterogeneity, multidrug resistance, and poor target accumulation. Therefore, multimodality-treatment with accurate drug delivery has become increasingly popular. Herein, a cell penetrating peptide-aptamer dual modified-nanocomposite (USILA NPs) was successfully constructed by coating a cell penetrating peptide and aptamer onto the surface of sorafenib (Sora), ursolic acid (UA) and indocyanine green (ICG) condensed nanodrug (USI NPs) via one-pot assembly for targeted and synergistic HCC treatment. USILA NPs showed higher cellular uptake and cytotoxicity in HepG2 and H22 cells, with a high expression of epithelial cell adhesion molecule (EpCAM). Furthermore, these NPs caused more significant mitochondrial membrane potential reduction and cell apoptosis. These NPs could selectively accumulate at the tumor site of H22 tumor-bearing mice and were detected with the help of ICG fluorescence; moreover, they retarded tumor growth better than monotherapy. Thus, USILA NPs can realize the targeted delivery of dual drugs and the integration of diagnosis and treatment. Moreover, the effects were more significant after co-administration of iRGD peptide, a tumor-penetrating peptide with better penetration promoting ability or programmed cell death ligand 1 (PD-L1) antibody for the reversal of the immunosuppressive state in the tumor microenvironment. The tumor inhibition rates of USILA NPs + iRGD peptide or USILA NPs + PD-L1 antibody with good therapeutic safety were 72.38 % and 67.91 % compared with control, respectively. Overall, this composite nanosystem could act as a promising targeted tool and provide an effective intervention strategy for enhanced HCC synergistic treatment.


Subject(s)
Carcinoma, Hepatocellular , Cell-Penetrating Peptides , Liver Neoplasms , Nanoparticles , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Pharmaceutical Preparations , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Cell-Penetrating Peptides/chemistry , B7-H1 Antigen/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Tumor Microenvironment
5.
J Control Release ; 361: 727-749, 2023 09.
Article in English | MEDLINE | ID: mdl-37591461

ABSTRACT

CRISPR/Cas9 genome editing is a promising therapeutic technique, which makes precise and rapid gene editing technology possible on account of its high sensitivity and efficiency. CRISPR/Cas9 system has been proved to able to effectively disrupt and modify genes, which shows great potential for cancer treatment. Current researches proves that virus vectors are capable of effectively delivering the CRISPR/Cas9 system, but immunogenicity and carcinogenicity caused by virus transmission still trigger serious consequences. Therefore, the greatest challenge of CRISPR/Cas9 for cancer therapy lies on how to deliver it to the target tumor site safely and effectively. Non-viral delivery systems with specific targeting, high loading capacity, and low immune toxicity are more suitable than viral vectors, which limited by uncontrollable side effects. Their medical advances and applications have been widely concerned. Herein, we present the molecule mechanism and different construction strategies of CRISPR/Cas9 system for editing genes at the beginning of this research. Subsequently, several common CRISPR/Cas9 non-viral deliveries for cancer treatment are introduced. Lastly, based on the main factors limiting the delivery efficiency of non-viral vectors proposed in the existing researches and literature, we summarize and discuss the main methods to solve these limitations in the existing tumor treatment system, aiming to introduce further optimization and innovation of the CRISPR/Cas9 non-viral delivery system suitable for cancer treatment.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Gene Editing , Technology , Neoplasms/genetics , Neoplasms/therapy
6.
J Colloid Interface Sci ; 650(Pt A): 526-540, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37423180

ABSTRACT

Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.


Subject(s)
Biological Products , Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Neoplasms , Humans , Copper/chemistry , Carcinoma, Hepatocellular/drug therapy , Hydrogen Peroxide , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Glutathione , Tumor Microenvironment
7.
Colloids Surf B Biointerfaces ; 229: 113468, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515961

ABSTRACT

Thrombus is one of the culprits for global health problems. However, most current antithrombotic drugs are limited by restricted targeting ability and a high risk of systemic bleeding. A hybrid cell membrane-coated biomimetic nanosystem (PM/RM@PLGA@P/R) was constructed in this paper to fulfil the targeted delivery of ginsenoside (Rg1) and perfluorohexane (PFH). Poly lactic-co-glycolic acid (PLGA) is used as carriers to coat Rg1 and PFH. Thanks to the camouflage of erythrocyte membrane (RM) and platelet membrane (PM), the nanosystem in question possesses remarkable features including immune escape and self-targeting. Therefore, a compact nano-core with PLGA@P/R was formed, with a hybrid membrane covering the surface of the core, forming a "core-shell" structure. With its "core-shell" structure, this nanoparticle fancifully combines the advantages of both PFH (the low-intensity focused ultrasound (LIFU)-responsive phase-change thrombolysis) and Rg1(the antioxidant, anti-inflammatory and anticoagulant abilities). Meanwhile, PM/RM@PLGA@P/R nanoparticles exhibits superior in-vitro performance in terms of ROS scavenging, anticoagulant activity and immune escape compared with those without cell membranes (PLGA@P/R). Furthermore, in the animal experiment in which the tail vein thrombosis model was established by injecting k-carrageenan, the combined treatment of LIFU and PM/RM@PLGA@P/R showed a satisfactory antithrombotic efficiency (88.20 %) and a relatively higher biological safety level. This strategy provides new insights into the development of more effective and safer targeted biomimetic nanomedicines for antithrombotic treatments, possessing potential application in synergistic therapy field.


Subject(s)
Ginsenosides , Nanoparticles , Thrombosis , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Erythrocyte Membrane , Ginsenosides/pharmacology , Biomimetics , Thrombosis/drug therapy , Anticoagulants , Nanoparticles/chemistry
8.
Biomater Sci ; 10(21): 6267-6281, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36128848

ABSTRACT

Conventional treatments for cancer, such as chemotherapy, surgical resection, and radiotherapy, have shown limited therapeutic efficacy, with severe side effects, lack of targeting and drug resistance for monotherapies, which limit their clinical application. Therefore, combinatorial strategies have been widely investigated in the battle against cancer. Herein, we fabricated a dual-targeted nanoscale drug delivery system based on EpCAM aptamer- and lactic acid-modified low-polyamidoamine dendrimers to co-deliver the FDA-approved agent disulfiram and photosensitizer indocyanine green, combining the imaging and therapeutic functions in a single platform. The multifunctional nanoparticles with uniform size had high drug-loading payload, sustained release, as well as excellent photothermal conversion. The integrated nanoplatform showed a superior synergistic effect in vitro and possessed precise spatial delivery to HepG2 cells with the dual-targeting nanocarrier. Intriguingly, a robust anticancer response of chemo-phototherapy was achieved; chemotherapy combined with the efficacy of phototherapy to cause cellular apoptosis of HepG2 cells (>35%) and inhibit the regrowth of damaged cells. Furthermore, the theranostic nanosystem displayed fluorescence imaging in vivo, attributed to its splendid accumulation in the tumor site, and it provided exceptional tumor inhibition rate against liver cancer cells (>76%). Overall, our research presents a promising multifunctional theranostic nanoplatform for the development of synergistic therapeutics for tumors in further applications.


Subject(s)
Dendrimers , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Indocyanine Green/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Epithelial Cell Adhesion Molecule , Doxorubicin/pharmacology , Delayed-Action Preparations , Precision Medicine , Disulfiram , Drug Delivery Systems/methods , Neoplasms/therapy , Lactic Acid , Hyperthermia, Induced/methods , Drug Liberation , Theranostic Nanomedicine/methods , Cell Line, Tumor
9.
Am J Chin Med ; 50(3): 749-772, 2022.
Article in English | MEDLINE | ID: mdl-35450513

ABSTRACT

The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.


Subject(s)
Ginsenosides , Hypertension , Neoplasms , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Hypertension/drug therapy , Neoplasms/drug therapy , Pharmaceutical Preparations
10.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112177, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749194

ABSTRACT

Rapamycin (RAPA) functions as effectively clinical immunosuppressive agent, its significant tumor growth suppression effect via various pathways in diverse cancers, especially combined with photothermal therapy, is gaining a burgeoning attention. However, its critical defects, low solubility and poor stability, have severely hampered its further application. Herein, RAPA, indocyanine green (ICG) and epigallocatechin gallate (EGCG) serving as chemotherapeutic drug, photosensitizer and biomimetic coatings, respectively, were co-assembled into carrier-free, high biocompatible ICG-RAPA-EGCG nanoparticles (IRE NPs) for synergistic cancer therapy. Particularly, the bioinspired EGCG coatings not only improved the stability of IRE NPs under physiological conditions to avert NPs disassembly and drug release, but also maintained the photostability of ICG to achieve excellent photothermal response. The results indicated that the as-prepared IRE NPs displayed good monodispersity and enhanced stability at various stored media after introducing of EGCG. Compared with monotherapy of RAPA or ICG, IRE NPs showed higher dose-dependent toxicity in MCF-7 cells, HepG2 cells and HeLa cells, especially plus near-infrared laser irradiation. Furthermore, IRE NPs exhibited quicker uptake in cells, higher accumulation in tumor region (even in 48 h) than free ICG and effectively inhibited tumor growth without side effect in H22 tumor-bearing mice. Collectively, the carrier-free IRE NPs provided a simply alternative approach to fabricate RAPA/photosensitizer co-loaded nanoparticles for combinatorial tumor therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Animals , Biomimetics , Cell Line, Tumor , HeLa Cells , Humans , Indocyanine Green , Mice , Photosensitizing Agents , Phototherapy , Photothermal Therapy , Polyphenols , TOR Serine-Threonine Kinases
11.
Int J Pharm ; 611: 121297, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34822966

ABSTRACT

Atherosclerosis (AS), with its intricate pathogenesis, is primarily responsible for the development and progression of cardiovascular diseases. Although drug development has made some achievements in AS therapy, limited targeting ability and rapid blood clearance remain great challenges for achieving superior clinical outcomes. Herein, ginsenoside (Re)- and catalase (CAT)-coloaded porous poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were prepared and then surface modified with U937 cell membranes (UCMs) to yield a dual targeted model and multimechanism treatment biomimetic nanosystem (Cat/Re@PLGA@UCM). The nanoparticles consisted of a core-shell spherical morphology with a favorable size of 112.7 ± 0.4 nm. Furthermore, UCM assisted the nanosystem in escaping macrophage phagocytosis and targeting atherosclerotic plaques. Meanwhile, loading with catalase might not only exhibit favorable antioxidant effects but also enable H2O2-responsive drug release ability. The Cat/Re@PLGA@UCM NPs also exhibited outstanding ROS scavenging properties, downregulating ICAM-1, TNF-α and IL-1ß, while preventing angiogenesis to attenuate the progression of AS. Moreover, the nanodrugs displayed 2.7-fold greater efficiency in reducing the atherosclerotic area in ApoE-/- mouse models compared to free Re. Our nanoformulation also displayed excellent biosafety in response to long-term administration. Overall, our study demonstrated the superiority of UCM-coated stimuli-responsive nanodrugs for effective and safe AS therapy.


Subject(s)
Atherosclerosis , Nanoparticles , Animals , Atherosclerosis/drug therapy , Biomimetics , Cell Membrane , Humans , Hydrogen Peroxide , Mice , U937 Cells
12.
Int J Pharm ; 605: 120784, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34111544

ABSTRACT

Diabetes is a metabolic disease caused by insufficient insulin secretion, action or resistance, in which insulin plays an irreplaceable role in the its treatment. However, traditional administration of insulin requires continuous subcutaneous injections, which is accompanied by inevitable pain, local tissue necrosis and hypoglycemia. Herein, a green and safe nanoformulation with unique permeability composed of insulin and ginsenosides is developed for transdermal delivery to reduce above-mentioned side effects. The ginsenosides are self-assembled to form shells to protect insulin from hydrolysis and improve the stability of nanoparticles. The nanoparticles can temporarily permeate into cells in 5 min and promptly excrete from the cell for deeper penetration. The insulin permeation is related to the disorder of stratum corneum lipids caused by ginsenosides. The skin acting as drug depot mantains the nanoparticles released continuously, therefore the body keeps euglycemic for 48 h. Encouraged by its long-lasting and effective transdermal therapy, ginsenosides-based nano-system is expected to deliver other less permeable drugs like proteins and peptides and benefit those who are with chronic diseases that need long-term medication.


Subject(s)
Ginsenosides , Nanoparticles , Administration, Cutaneous , Drug Delivery Systems , Insulin , Permeability , Skin
13.
Carbohydr Polym ; 257: 117642, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33541666

ABSTRACT

Carrageenan (CRG) is a kind of linear sulfated polysaccharide that emerging as a promising substituent in food, pharmaceutics, and cosmetics. In recent years, biological properties of CRG polysaccharides such as antiviral, immunomodulatory, anticoagulant, antioxidant, and anticancer have been broadly studied, however, systematical summary of their structure-property relationships is scarce. Moreover, chemical modification is of great significance to explore biological and physiochemical properties of CRG polysaccharides which should be focused on. Chemical modification of CRG polysaccharides, e.g., carboxymethylation, thiolation, acetylation, phosphorylation, oversulfation, oxidization, and cationic or other derivatives, can improve their bioactivities and facilitate their applications in different biological systems. Hence, this review aims to elucidate structure-property relationships of CRG and its chemically modified derivatives with different structures and bioactivities, so as toxicity of CRG as food additive for the guidance of its clinical application.


Subject(s)
Carrageenan/chemistry , Drug Delivery Systems , Polysaccharides/chemistry , Rhodophyta/metabolism , Sulfates/chemistry , Animals , Anticoagulants/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Cations , Drug Design , Food Additives , Humans , Mice , Phosphorylation , Structure-Activity Relationship
14.
ACS Appl Mater Interfaces ; 12(51): 57362-57372, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33301289

ABSTRACT

The rapid development of CRISPR/Cas9 systems has opened up tantalizing prospects to sensitize cancers to chemotherapy using efficient targeted genome editing, but safety concerns and possible off-target effects of viral vectors remain a major obstacle for clinical application. Thus, the construction of novel nonviral tumor-targeting nanodelivery systems has great potential for the safe application of CRISPR/Cas9 systems for gene-chemo-combination therapy. Here, we report a polyamidoamine-aptamer-coated hollow mesoporous silica nanoparticle for the co-delivery of sorafenib and CRISPR/Cas9. The core-shell nanoparticles had good stability, enabled ultrahigh drug loading, targeted delivery, and controlled-release of the gene-drug combination. The nanocomplex showed >60% EGFR-editing efficiency without off-target effects in all nine similar sites, regulating the EGFR-PI3K-Akt pathway to inhibit angiogenesis, and exhibited a synergistic effect on cell proliferation. Importantly, the co-delivery nanosystem achieved efficient EGFR gene therapy and caused 85% tumor inhibition in a mouse model. Furthermore, the nanocomplex showed high accumulation at the tumor site in vivo and exhibited good safety with no damage to major organs. Due to these properties, the nanocomplex provides a versatile delivery approach for efficient co-loading of gene-drug combinations, allowing for precise gene editing and synergistic inhibition of tumor growth without apparent side effects on normal tissues.


Subject(s)
CRISPR-Cas Systems , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Sorafenib/therapeutic use , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/toxicity , CRISPR-Associated Protein 9/genetics , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Liberation , Epithelial Cell Adhesion Molecule/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Editing , Genes, erbB-1 , Humans , Mice , Nanoparticles/toxicity , Polyamines/chemistry , Polyamines/toxicity , Porosity , Signal Transduction/drug effects , Silicon Dioxide/toxicity
15.
J Org Chem ; 85(19): 12785-12796, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32847359

ABSTRACT

Reported herein is a unified strategy to generate difluoroalkyl radicals from readily prepared α-difluorinated gem-diols by single electron oxidation. Under microwave irradiation, a catalytic amount of oxidant Cu(OAc)2 succeeds in the formation of transient difluoroalkyl radicals in situ, for the first time. The reaction features a simple protocol, short reaction time, scalability, and high yield. The synthetic utility of this new methodology was also explored for the synthesis of difluoroalkylated spiro-cyclohexadienones, which is an important core structure in natural products and pharmaceuticals.

16.
Pharmacol Res ; 159: 105031, 2020 09.
Article in English | MEDLINE | ID: mdl-32562816

ABSTRACT

Thrombosis initiated by abnormal platelet aggregation is a pivotal pathological event that precedes most cases of cardiovascular diseases (CVD). Recently, growing evidence indicates that platelet could be a potential target for CVD prevention. However, as the conventional antithrombotic management strategy, applications of current antiplatelet agents are somewhat limited by their various side effects, such as bleeding risk and drug resistance. Hence, efforts have been made to search for agents as complementary therapies. Ginsenoside, the principal active component extracted from Panax ginseng, has gained much attention for its regulations on multiple crucial events of platelet aggregation. From structural characteristics to clinical applications, this review anatomized the intrinsic structure-function relationship of antiplatelet potency of ginsenosides, and the involved signal pathways were specifically summarized. Additionally, the emphasis was placed on clinical studies that investigate the antithrombotic efficacy of ginsenosides in the treatment of CVD. Further, a broad overview of approaches for improving the bioavailability of ginsenosides was concluded. Limitations and prospects of current studies were also discussed. This study may provide some new insights into the systematic understanding of ginsenosides in CVD treatment and lay a foundation for future research.


Subject(s)
Blood Platelets/drug effects , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Ginsenosides/therapeutic use , Muscle, Smooth, Vascular/drug effects , Neointima , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation/drug effects , Vascular Remodeling/drug effects , Animals , Biological Availability , Blood Platelets/metabolism , Cardiovascular Agents/adverse effects , Cardiovascular Agents/pharmacokinetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/pathology , Ginsenosides/adverse effects , Ginsenosides/pharmacokinetics , Humans , Molecular Structure , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/pharmacokinetics , Signal Transduction , Structure-Activity Relationship
17.
Acta Biomater ; 111: 373-385, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32413580

ABSTRACT

Nanosized drug delivery systems have emerged to improve the therapeutic performance of anticancer drugs. Here, an amphiphile-based nanoparticle consisting of amphiphilic prodrug N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine was developed (UP12 NPs) with uniform sizes (~100 nm), which possessed the advantages of small molecules and nanomedicine. The positively charged UP12 NPs significantly enhanced the cellular drug uptake on HepG2 cells than negatively charged UA NPs. Meanwhile, UP12 and these therapeutic amphiphile-based nanoparticles could induce cell apoptosis more efficiently than that of UA and UA NPs. Moreover, molecular docking demonstrated that the UP12 and intercellular adhesion molecule 1 (ICAM-1) could dock well. UP12 and UP12 NPs significantly decreased the mRNA expression of ICAM-1 and inhibited the migration and adhesion of liver cancer cells (HepG2 cells), which indicated that UP12 might be one of the potential ICAM-1 inhibitors. In vivo, UP12 NPs enhanced tumor accumulation, inhibited tumor lung metastasis and showed good biocompatibility. Overall, UP12 or UP12 NPs could be developed as prospective drugs for cancer metastasis therapy via ICAM-1 mediated cell adhesion. STATEMENT OF SIGNIFICANCE: In this study, we fabricated the therapeutic amphiphile-based nanoparticles by assembly of ursolic acid piperazine derivative N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine (name as UP12 NPs) with low cytotoxicity. UP12 NPs exhibited spherical morphology and uniform sizes. Particularly, these therapeutic amphiphile-based nanoparticles significantly enhanced tumor accumulation and inhibited tumor lung metastases via intercellular adhesion molecule 1 (ICAM-1) mediated cell adhesion.


Subject(s)
Carcinoma, Hepatocellular , Intercellular Adhesion Molecule-1 , Liver Neoplasms , Nanoparticles , Carcinoma, Hepatocellular/drug therapy , Cell Adhesion , Cell Line, Tumor , Drug Delivery Systems , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Prospective Studies
18.
Eur J Pharm Sci ; 142: 105100, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31669385

ABSTRACT

Warfarin and ginseng have been widely used in the treatment of cardiovascular diseases. However, the clinical safety and effectiveness of herb-drug combination treatment are still controversial. Therefore, it is very essential to probe the interaction between warfarin and ginseng. In this study, in vitro and in vivo study was carried out to demonstrate that whether there is an interaction between warfarin and ginsenosides (GS), which is the main component of ginseng. In vitro study showed that the adhesion ability between endothelial cells and matrigel/platelets was enhanced due to the up-regulating expression of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) proteins by treatment of warfarin+GS combination compared to warfarin/GS treatment alone. Moreover, GS could weaken the anticoagulation effect of warfarin in hyperlipemia rats owning to the increased expression levels of coagulation factors and hepatic cytochrome P450 enzymes in plasma after long-term co-administration of warfarin with GS. The results of both in vitro and in vivo study demonstrated that there is a serious interaction between warfarin and ginseng, which may deteriorate atherosclerosis and thrombosis after combined use of warfarin and GS.


Subject(s)
Anticoagulants/pharmacology , Cardiovascular Diseases/drug therapy , Ginsenosides/pharmacology , Herb-Drug Interactions/physiology , Warfarin/pharmacology , Animals , Blood Coagulation/drug effects , Cardiovascular Diseases/metabolism , Cell Line , Cytochrome P-450 Enzyme System/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Adhesion Molecule-1/metabolism , Liver/drug effects , Liver/metabolism , Panax/chemistry , Plant Extracts/pharmacology , Rats , Thrombosis/drug therapy , Thrombosis/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
19.
J Mater Chem B ; 7(44): 6914-6923, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31482166

ABSTRACT

The combination of chemotherapy and photothermal therapy displays improved anti-cancer effects and lower systematic toxicity of a free drug compared with monotherapy. In this study, we designed innovative, carrier-free nanodrugs (PTX/ICG NDs) composed of the chemotherapeutic agent paclitaxel (PTX) and the photosensitizer indocyanine green (ICG) via self-assembly. The nanodrugs not only incorporated two different modalities into one delivery system for combined chemo-photothermal therapy but also enhanced the solubility of PTX without the need for any carrier. The as-prepared PTX/ICG NDs exhibited the merits of a relatively uniform size of 140 ± 1.4 nm, surface charge of -36 ± 2.2 mV, and high drug loading content of PTX. The combination strategy exerted a synergistic effect on the cytotoxicity of cancer cells in vitro, which could be attributed to the high cellular uptake and sustained release of PTX. Furthermore, an in vivo study indicated that PTX/ICG NDs showed higher accumulation in the tumor site than free ICG and possessed strong synergistic chemo-photothermal therapy efficacy against tumors in H22 tumor-bearing mice. Taken together, our study demonstrates that PTX/ICG NDs hold promise to become an alternative chemo-photothermal therapy agent to treat cancers.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Indocyanine Green/chemistry , Nanoparticles , Paclitaxel/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Line, Tumor , Cell Survival , Coloring Agents/chemistry , Drug Design , Humans , Mice , Neoplasms, Experimental , Paclitaxel/chemistry , Rats
20.
Int J Pharm ; 570: 118663, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31493497

ABSTRACT

Nanoformulations with advantages in drug delivery, safety and pharmacodynamics have been booming as a promising strategy for cancer therapy. However, the traditional nanocarrier still suffers from the low drug loading capacity, potential systematic toxicity, unclear metabolism, and other uncertainties. To overcome these issues, carrier-free nanodrugs with desirable bioactivity were developed rapidly and drawn considerable attention. Meanwhile, the multifunctional self-delivery nanoarcheticture fabricated by a simple and "green" method, has significant advantages in synergistic cancer therapy and inhibition of multidrug resistant (MDR). Till now, carrier-free nanoparticles for tumor theranostics, phototherapy, chemotherapy, diagnose and synergistic therapy, have made outstanding progress. In this review, we make an integrated and exhaustive overview of lately reports on carrier-free nanodrug delivery systems formed by several active agents. We summarize the self-assembly and modified strategies, with emphasis on application superiority of carrier-free nanocrystal, and give new insight into the establishment of ideal nanosystems for cancer treatment.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Drug Delivery Systems/methods , Drug Resistance, Multiple/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...