Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Agric Food Chem ; 71(17): 6662-6672, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079496

ABSTRACT

Quercetin-3,4'-O-diglucoside (Q3,4'G), among the major dietary flavonoids, is superior to quercetin aglycone or quercetin monoglucoside in solubility. However, its low content in nature makes it hard to be prepared in large quantities by traditional extraction methods. In the present study, the F378S mutant of UGT78D2 (78D2_F378S) derived from Arabidopsis thaliana with improved regioselectivity and the V371A mutant of UGT73G1 (73G1_V371A) derived from Allium cepa were adopted to realize a two-step continuous glycosylation of quercetin to produce Q3,4'G. The mutation S31D was introduced to the sucrose synthase from Micractinium conductrix with enhanced activity, which was responsible for regenerating UDP-glucose by coupling with 78D2_F378S and 73G1_V371A. Using the aforementioned enzymes, prepared from the three-enzyme co-expression strain, 4.4 ± 0.03 g/L (7.0 ± 0.05 mM, yield 21.2%) Q3,4'G was produced from 10 g/L quercetin after reaction for 24 h at 45 °C.


Subject(s)
Arabidopsis , Quercetin , Glycosyltransferases/genetics , Glucosides , Onions/genetics , Arabidopsis/genetics
2.
Bioorg Med Chem Lett ; 67: 128703, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35364239

ABSTRACT

It is generally believed that EGFR/HER2 dual-target inhibitors may overcome the resistance of EGFR TKIs caused by HER2 overexpression. The structure-based synthesis and biological evaluation of quinazoline derivatives as EGFR/HER2 dual-target inhibitors has been studied in this paper. II-1, II-2, III-3, III-4 displayed comparable inhibitory potency against EGFR and HER2 and II-1 showed remarkable antiproliferative activities against NCI-H358/PC-9/Calu-3/NCI-H1781 (EGFR IC50 = 0.30 nM, HER2 IC50 = 6.07 nM, NCI-H358 GI50 = 23.30 nM, PC-9 GI50 = 1.95 nM, Calu-3 GI50 = 23.13 nM NCI-H1781 GI50 = 41.61 nM).


Subject(s)
Antineoplastic Agents , Quinazolines , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Structure-Activity Relationship
3.
Biotechnol J ; 16(11): e2100199, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34392609

ABSTRACT

BACKGROUND: 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important derivative of L-ascorbic acid (L-AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-AA and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O-glycoside hydrolases, might be used in glycosylation reactions to synthesize AA-2G. MAIN METHODS AND MAJOR RESULTS: Here, an α-glucosidase from Oryza sativa was heterologously produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular recombinant α-glucosidase (rAGL) reached 9.11 U mL-1 after fed-batch cultivation for 102 h in a 5 L fermenter. The specific activity of purified rAGL is 49.83 U mg-1 at 37°C and pH 4.0. The optimal temperature of rAGL was 65°C, and it was stable below 55°C. rAGL was active over the range of pH 3.0-7.0, with the maximal activity at pH 4.0. Under the condition of 37°C, pH 4.0, equimolar maltose and ascorbic acid sodium salt, 8.7 ± 0.4 g L-1  of AA-2G was synthesized by rAGL. CONCLUSIONS AND IMPLICATIONS: The production of rAGL in P. pastoris was proved to be beneficial in providing enough enzyme and promoting biocatalytic synthesis of AA-2G. These studies lay the basis for the industrial application of α-glucosidase.


Subject(s)
Oryza , alpha-Glucosidases , Ascorbic Acid/analogs & derivatives , Oryza/genetics , Saccharomycetales , alpha-Glucosidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL