Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 832: 137806, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38714229

ABSTRACT

BACKGROUND: Trigeminal neuralgia (TN) is a common and difficult-to-treat neuropathic pain disorder in clinical practice. Previous studies have shown that Toll-like receptor 4 (TLR4) modulates the activation of the NF-κB pathway to affect neuropathic pain in rats. Voltage-gated sodium channels (VGSCs) are known to play an important role in neuropathic pain electrical activity. OBJECTIVE: To investigate whether TLR4 can regulate Nav1.3 through the TRAF6/NF-κB p65 pathway after infraorbital nerve chronic constriction injury (ION-CCI). STUDY DESIGN: ION-CCI modeling was performed on SD (Sprague Dawley) rats. To verify the success of the modeling, we need to detect the mechanical pain threshold and ATF3. Then, detecting the expression of TLR4, TRAF6, NF-κB p65, p-p65, and Nav1.3 in rat TG. Subsequently, investigate the role of TLR4/TRAF6/NF-κB pathway in ION-CCI model by intrathecal injections of LPS-rs (TLR4 antagonist), C25-140 (TRAF6 inhibitor), and PDTC (NF-κB p65 inhibitor). RESULTS: ION-CCI surgery decreased the mechanical pain threshold of rats and increased the expression of ATF3, TLR4, TRAF6, NF-κB p-p65 and Nav1.3, but there was no difference in NF-κB p65 expression. After inject antagonist or inhibitor of the TLR4/TRAF6/NF-κB pathway, the expression of Nav1.3 was decreased and mechanical pain threshold was increased. CONCLUSION: In the rat model of ION-CCI, TLR4 in the rat trigeminal ganglion regulates Nav1.3 through the TRAF6/NF-κB p65 pathway, and TLR4 antagonist alleviates neuropathic pain in ION-CCI rats.


Subject(s)
NAV1.3 Voltage-Gated Sodium Channel , Rats, Sprague-Dawley , Signal Transduction , TNF Receptor-Associated Factor 6 , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , TNF Receptor-Associated Factor 6/metabolism , Male , NAV1.3 Voltage-Gated Sodium Channel/metabolism , Signal Transduction/physiology , NF-kappa B/metabolism , Trigeminal Neuralgia/metabolism , Rats , Disease Models, Animal , Transcription Factor RelA/metabolism , Activating Transcription Factor 3/metabolism , Pain Threshold/physiology
2.
Neuropeptides ; 99: 102327, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36842389

ABSTRACT

BACKGROUND: Trigeminal neuralgia is a common chronic maxillofacial neuropathic pain disorder, and voltage-gated sodium channels (VSGCs) are likely involved in its pathology. Prior studies report that pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide highly expressed in the trigeminal ganglion, may contribute to dorsal root ganglion neuron excitability by modulating the Nav1.7. OBJECTIVE: We investigated whether PACAP can regulate Nav1.7 through the mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (MEK/ERK) pathway in the trigeminal ganglion after chronic constriction injury of the infraorbital nerve (ION-CCI) in rats. STUDY DESIGN: Sprague-Dawley rats underwent ION-CCI, followed by intrathecal injection of PACAP 6-38 (PAC1 receptor antagonist) and PD98059 (MEK/ERK antagonist). Quantitative real-time PCR and western blot were used to quantify ATF3, PACAP, ERK, p-ERK, and Nav1.7 expression. RESULTS: The mechanical pain threshold decreased from day 3 to day 21 after ION-CCI and reached the lowest testing value by day 14; however, it increased after PACAP 6-38 and PD98059 injections. Additionally, ION-CCI surgery increased ATF3, PACAP, and p-ERK expression in the rat trigeminal ganglion and decreased Nav1.7 and PAC1 receptor expression; however, there was no difference in ERK expression. PACAP 6-38 injection significantly decreased PACAP, p-ERK, and Nav1.7 expression and increased the PAC1 receptor expression, with no change in ERK expression. Moreover, PD98059 injection decreased PACAP, p-ERK, and Nav1.7 expression and increased the expression of PAC1 receptor. CONCLUSION: After ION-CCI, PACAP in the rat trigeminal ganglion can modulate Nav1.7 through the MEK/ERK pathway via the PAC1 receptor. Further, PACAP inhibition alleviates allodynia in ION-CCI rats.


Subject(s)
MAP Kinase Signaling System , Neuralgia , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rats, Sprague-Dawley , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Constriction , Neuralgia/drug therapy , Signal Transduction , Mitogen-Activated Protein Kinase Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL