Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 857
Filter
1.
Sci Total Environ ; 945: 174091, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908580

ABSTRACT

Numerous shelter forests have been established to combat desertification in the Mu Us Sandy Land, China. Shelter forests modify the characteristics of the underlying surface and affect the regional water cycle by altering rainfall partitioning. Understanding the rainfall partitioning process and its controlling factors for indigenous and exotic species is crucial for vegetation restoration and sustainable soil water management. This study developed an event-based rainfall partitioning process for three typical shelter forests. Indigenous vegetation, Amygdalus pedunculata Pall. (A. pedunculata), and two exotic species, Amorpha fruticosa L. (A. fruticose) and Pinus sylvestris var. mongholica Litv. (P. sylvestris), were observed during the rainy seasons (July and August) of 2021 and 2022. The results showed that throughfall, stemflow, and interception loss constituted 71.01 %, 8.23 %, and 20.76 % of rainfall, respectively, for A. pedunculata. The corresponding values were 74.65 %, 8.47 %, and 16.88 % for A. fruticose and 73.27 %, 1.44 %, and 25.29 % for P. sylvestris. Compared with the introduced P. sylvestris, the shrub canopy showed a greater funneling ratio and was conducive to recharging soil water by precipitation. The amount and intensity of rainfall were significantly correlated with the rainfall partitioning characteristics, whereas the correlation between rainfall duration and partitioning was insignificant. Based on the results of the revised Gash model, the stemflow was primarily influenced by the percentage of rainfall diverted to the stemflow. The interception loss for P. sylvestris was primarily influenced by the canopy storage capacity. However, the canopy storage capacity and the ratio of mean evaporation rate to mean rainfall intensity had significant effects on the interception loss in A. pedunculata and A. fruticose. It is necessary to comprehensively consider the vegetation type (tree/shrub and indigenous/exotic species) and the corresponding rainfall partitioning characteristics of shelter forests for the scientific construction and management of shelter forests in the Mu Us Sandy Land.

2.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857391

ABSTRACT

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Subject(s)
Biomass , Ecosystem , Permafrost , Tibet , Wetlands , Plants/metabolism , Climate Change , Temperature , Carbon Cycle , Plant Development/physiology , Soil/chemistry , Grassland
3.
Mol Cancer Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718076

ABSTRACT

Lung adenocarcinoma (LUAD) is the most prevalent histological type of lung cancer. Previous studies have reported that specific long non-coding RNAs (lncRNAs) are involved in cancer development and progression. The phenotype and mechanism of ENST00000440028, named MSL3P1, a lncRNA which we referring to a cancer-testis gene with potential roles in tumorigenesis and progression, have not been reported. We found that MSL3P1 is overexpressed in LUAD tumor tissues, which is significantly associated with clinical characteristics, metastasis, and poor clinical prognosis. MSL3P1 promotes the metastasis of LUAD in vitro and in vivo. The enhancer reprogramming in LUAD tumor tissue is the major driver of the aberrantly expression of MSL3P1. Mechanistically, due to the competitive binding to CUL3 mRNA with ZFC3H1 protein (a protein involved in targeting polyadenylated RNA to exosomes and promoting the degradation of target mRNA), MSL3P1 can prevent the ZFC3H1-mediated RNA degradation of CUL3 mRNA and transport it to the cytoplasm. This activates the downstream epithelial-to-mesenchymal transition signaling pathway, and promote tumor invasion and metastasis. Implications: This study indicates that lncRNA MSL3P1 regulates CUL3 mRNA stability and promotes the metastasis and holds potential as a prognostic biomarker and therapeutic target in LUAD.

4.
ACS Appl Mater Interfaces ; 16(17): 22294-22302, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634660

ABSTRACT

Flexible and stretchable organic solar cells (OSCs) show great promise in wearable and stretchable electronic applications. However, current high-performance OSCs consisting of polymer donors (PDs) and small-molecule acceptors (SMAs) face significant challenges in achieving both high power conversion efficiency (PCE) and excellent stretch-ability. In this study, we synthesized a new polymerized-small-molecule acceptor (P-SMA) PY-SiO featuring siloxane-terminated side chains and compared its photovoltaic and mechanical performance to that of the reference PY-EH with ethylhexyl-terminated side chains. We found that the incorporation of siloxane-terminated side chains in PY-SiO enhanced the molecular aggregation and charge transport, leading to an optimized film morphology. The resultant of all-polymer solar cells (all-PSCs) based on PBDB-T/PY-SiO showed a higher PCE of 12.04% than the PY-EH-based one (10.85%). Furthermore, the siloxane-terminated side chains also increased the interchain distance and provided a larger free volume for chain rotation and reconfiguration, resulting in a higher film crack-onset strain (COS: 18.32% for PBDB-T/PY-SiO vs 11.15% for PBDB-T/PY-EH). Additionally, the PY-SiO-based stretchable all-PSCs exhibited an impressive PCE of 9.8% and retained >70% of its original PCE even under a substantial 20% strain, exceeding the performance of the PY-EH-based stretchable all-PSCs. Our result suggests the great potential of the siloxane-terminated side chain for achieving high-performance and stretchable OSCs.

5.
Thorac Cancer ; 15(16): 1312-1319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682829

ABSTRACT

INTRODUCTION: Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer. The presence of lymph node metastasis plays a crucial role in determining the overall treatment approach and long-term prognosis for early LUAD, therefore accurate prediction of lymph node metastasis is essential to guide treatment decisions and ultimately improve patient outcomes. METHODS: We performed transcriptome sequencing on T1 LUAD patients with positive or negative lymph node metastases and combined this data with The Cancer Genome Atlas Program cohort to identify potential risk molecules at the tissue level. Subsequently, by detecting the expression of these risk molecules by real-time quantitative PCR in serum samples, we developed a model to predict the risk of lymph node metastasis from a training cohort of 96 patients and a validation cohort of 158 patients. RESULTS: Through transcriptome sequencing analysis of tissue samples, we identified 11 RNA (miR-412, miR-219, miR-371, FOXC1, ID1, MMP13, COL11A1, PODXL2, CXCL13, SPOCK1 and MECOM) associated with positive lymph node metastases in T1 LUAD. As the expression of FOXC1 and COL11A1 was not detected in serum, we constructed a predictive model that accurately identifies patients with positive lymph node metastases using the remaining nine RNA molecules in the serum of T1 LUAD patients. In the training set, the model achieved an area under the curve (AUC) of 0.89, and in the validation set, the AUC was 0.91. CONCLUSIONS: We have established a new risk prediction model using serum samples from T1 LUAD patients, enabling noninvasive identification of those with positive lymph node metastases.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Lymphatic Metastasis , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Female , Male , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Liquid Biopsy/methods , Middle Aged , Aged , Biomarkers, Tumor/genetics , Prognosis
7.
Proc Natl Acad Sci U S A ; 121(15): e2322127121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568978

ABSTRACT

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

9.
Genes Dis ; 11(4): 101079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38560501

ABSTRACT

CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.

10.
RSC Adv ; 14(17): 12142-12146, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38628470

ABSTRACT

MOF-808, owing to the synergistic effect of its large surface area and surface charge matching, showed a diclofenac sodium (DCF) removal capacity as high as 630 mg g-1, and the ability to adsorb 436 mg g-1 DCF in two hours, outperforming many common Zr-MOFs under the same conditions. Importantly, a series of free-standing mixed-matrix membranes made by combining polyacrylonitrile with MOF-808 were fabricated and exhibited high efficiency of removing DCF from water via an easily accessible filtration method.

11.
Front Oncol ; 14: 1372123, 2024.
Article in English | MEDLINE | ID: mdl-38628666

ABSTRACT

Background: Portal vein tumor thrombus (PVTT) seriously affects the prognosis of hepatocellular carcinoma (HCC). However, whether bile duct tumor thrombus (BDTT) significantly affects the prognosis of HCC as much as PVTT remains unclear. We aimed to compare the long-term surgical outcomes of HCC with macroscopic PVTT (macro-PVTT) and macroscopic BDTT (macro-BDTT). Methods: The data of HCC patients with macro-BDTT or macro-PVTT who underwent hemihepatectomy were retrospectively reviewed. A propensity score matching (PSM) analysis was performed to reduce the baseline imbalance. The recurrence-free survival (RFS) and overall survival (OS) rates were compared between the cohorts. Results: Before PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.043 and P = 0.008, respectively). Multivariate analyses identified PVTT (hazard ratio [HR] = 1.835, P = 0.016) and large HCC (HR = 1.553, P = 0.039) as independent risk factors for poor OS and RFS, respectively. After PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.037 and P = 0.004, respectively). The 3- and 5-year OS rates were significantly higher in the BDTT group (59.5% and 52.1%, respectively) than in the PVTT group (33.3% and 20.2%, respectively). Conclusion: Aggressive hemihepatectomy provides an acceptable prognosis for HCC patients with macro-BDTT. Furthermore, the long-term surgical outcomes of HCC patients with macro-BDTT were significantly better than those of HCC patients with macro-PVTT.

12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 759-768, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646764

ABSTRACT

The increasing carbon emissions is one of the important reasons for global warming. As a key area of carbon emissions, carbon sequestration capacity of cities is urgently needed to be improved. Carbon sequestration ser-vices can be transferred between supply and demand areas due to the circulation of atmosphere. With Linyi City as an example, we used the minimum cumulative resistance model to extract the matching path of supply and demand, and constructed a carbon sequestration ecological network. The results showed that the regions with high supply of carbon sequestration services were located in the north and south of the study area, and that current total supply could solve about 60% of the total demand. Although the spatial distribution of supply and demand was uneven, 54% of the areas that could meet the surrounding carbon sequestration demand were still idle. The optimized supply-demand matching paths could maintain good transmission efficiency of material and energy, with lower costs. Paths with strong potential carbon sequestration capacity were located in the central and northwest part of the research area. In the construction of carbon sequestration ecological network, it is necessary to strengthen the protection and restoration of the supply side of carbon sequestration services, realize carbon reduction and strengthen carbon sequestration on the demand side, and optimize the matching path of supply and demand. This method provided services to the demand areas through the oversupply of ecosystem services, optimized the overall resource allocation, which could advance regional carbon sequestration capacity.


Subject(s)
Carbon Sequestration , Cities , Ecosystem , China , Conservation of Natural Resources/methods
13.
J Formos Med Assoc ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38589275

ABSTRACT

BACKGROUND: Statins may reduce the risk of recurrent gallstone disease by decreasing bile cholesterol saturation and pathogenicity. However, limited studies have investigated this issue. This study aimed to assess whether statin doses and serum cholesterol levels were associated with a decreased risk of recurrent biliary stone diseases after the first event index, with a follow-up time of 15 years. METHODS: Based on the Chang Gung Research Database (CGRD) between January 1, 2001, and December 31, 2020, we enrolled 68,384 patients with the International Classification of Diseases, Ninth and Tenth Revision codes of choledocholithiasis. After exclusions, 32,696 patients were divided into non-statin (<28 cDDD, cumulative defined daily doses) (n = 27,929) and statin (≥28 cDDD) (n = 4767) user groups for analysis. Serum cholesterol trajectories were estimated using group-based trajectory modeling (n = 8410). RESULTS: The statin users had higher Charlson Comorbidity Index (CCI) scores than the non-statin users. Time-dependent Cox regression analysis showed that statin use >365 cDDD was associated with a significantly lower risk of recurrent biliary stones (adjusted hazard ratio [aHR] = 0.28, 95% CI, 0.24-0.34; p < 00.0001), acute pancreatitis (aHR = 0.24, 95% CI, 0.17-0.32, p < 00.0001), and cholangitis (aHR = 0.28, 95% CI, 0.25-0.32, p < 00.0001). Cholecystectomy was also a protective factor for recurrent biliary stones (aHR = 0.41, 95% CI, 0.37-0.46; p < 00.0001). The higher trajectory serum cholesterol group (Group 3) had a lower risk trend for recurrent biliary stones (aHR = 0.79, p = 0.0700) and a lower risk of cholangitis (aHR = 0.79, p = 0.0071). CONCLUSION: This study supports the potential benefits of statin use and the role of cholecystectomy in reducing the risk of recurrent biliary stone diseases.

14.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540790

ABSTRACT

Diatoms, efficient carbon capture organisms, contribute to 20% of global carbon fixation and 40% of ocean primary productivity, garnering significant attention to their growth. Despite their significance, the synthesis mechanism of polyamines (PAs), especially spermidine (Spd), which are crucial for growth in various organisms, remains unexplored in diatoms. This study reveals the vital role of Spd, synthesized through the spermidine synthase (SDS)-based pathway, in the growth of the diatom Phaeodactylum tricornutum. PtSDS1 and PtSDS2 in the P. tricornutum genome were confirmed as SDS enzymes through enzyme-substrate selectivity assays. Their distinct activities are governed primarily by the Y79 active site. Overexpression of a singular gene revealed that PtSDS1, PtSDS2, and PtSAMDC from the SDS-based synthesis pathway are all situated in the cytoplasm, with no significant impact on PA content or diatom growth. Co-overexpression of PtSDS1 and PtSAMDC proved essential for elevating Spd levels, indicating multifactorial regulation. Elevated Spd content promotes diatom growth, providing a foundation for exploring PA functions and regulation in diatoms.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/metabolism , Spermidine Synthase/genetics , Spermidine Synthase/metabolism , Polyamines/metabolism , Biosynthetic Pathways , Genome
15.
Insect Sci ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494587

ABSTRACT

Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.

16.
Huan Jing Ke Xue ; 45(2): 1069-1079, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471944

ABSTRACT

Microplastics (MPs) are a type of emerging contaminants that pose a potential threat to global terrestrial ecosystems. The accumulation of MPs in soil inevitably affects soil physical and chemical properties, both directly and indirectly. Additionally, owing to their small size and surface features, MPs have excellent sorption capacity for both organic and inorganic materials, thus affecting their fate in the environment. However, the influence of MPs on heavy metal sorption and transport in soil is still not fully understood. In this study, polyethylene (PE) and Cd were selected as research objects, and on the basis of clarifying the adsorption mechanism of Cd on PE MPs, the effects of PE concentration and particle size on Cd release and transport behavior in soil under different ionic strengths and types (Ca2+ and Na+) were studied using column leaching experiments. The results of the batch experiments showed that the adsorption capacity of PE MPs for Cd2+ decreased with the increase in particle size. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zeta potential were used to analyze the properties of PE MPs and adsorption behavior of Cd2+ onto MPs. The adsorption was mainly a physical process and was controlled by intra-particle diffusion. The adsorption kinetics could be described well by the quasi-second-order kinetics and Webber-Morris model. The adsorption isotherm conformed to the Langmuir model, indicating monolayer adsorption. The results of leaching experiments showed that the effect of PE MPs on Cd release and transport in soil was related to the CaCl2 concentration. At high ionic strength (0.05 mol·L-1 and 0.1 mol·L-1), PE promoted the transport of Cd. The effluent concentration of Cd2+ increased from 6.48 mg·L-1 and 16.79 mg·L-1 to 7.12 mg·L-1 and 23.45 mg·L-1, whereas at low ionic strength (0.01 mol·L-1), Cd transport was inhibited by PE MPs, and the effluent concentration of Cd2+ decreased from 0.66 mg·L-1 to 0.57 mg·L-1. The larger the amount of PE added, the more significant the promoting or inhibiting effect. Additionally, the release and transport of Cd in soil were also affected by the MPs particle size and concentration. When the addition amount was small (1%, 4%), the large-sized MPs were more conducive to the transport of Cd in soil. When the addition amount was large (7%, 20%), MPs with small particle sizes promoted Cd2+ transport more significantly. When the leaching solution used was NaCl, soil permeability decreased significantly. PE MPs had no significant effect on Cd release and transport but changed the stability of soil aggregates. In conclusion, PE MPs could change the release and transport behavior of Cd in soil, and the impact results were not only related to the particle size and content of MPs but were also influenced by the chemical properties of the soil solution.

17.
Angew Chem Int Ed Engl ; 63(22): e202403139, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38530206

ABSTRACT

Designing new acceptors is critical for intrinsically stretchable organic solar cells (IS-OSCs) with high efficiency and mechanical robustness. However, nearly all stretchable polymer acceptors exhibit limited efficiency and high-performance small molecular acceptors are very brittle. In this regard, we select thienylene-alkane-thienylene (TAT) as the conjugate-break linker and synthesize four dimerized acceptors by the regulation of connecting sites and halogen substitutions. It is found that the connecting sites and halogen substitutions considerably impact the overall electronic structures, aggregation behaviors, and charge transport properties. Benefiting from the optimization of the molecular structure, the dimerized acceptor exhibits rational phase separation within the blend films, which significantly facilitates exciton dissociation while effectively suppressing charge recombination processes. Consequently, FDY-m-TAT-based rigid OSCs render the highest power conversion efficiency (PCE) of 18.07 % among reported acceptors containing conjugate-break linker. Most importantly, FDY-m-TAT-based IS-OSCs achieve high PCE (14.29 %) and remarkable stretchability (crack-onset strain [COS]=18.23 %), significantly surpassing Y6-based counterpart (PCE=12.80 % and COS=8.50 %). To sum up, these findings demonstrate that dimerized acceptors containing conjugate-break linkers have immense potential in developing highly efficient and mechanically robust OSCs.

18.
Nat Commun ; 15(1): 1254, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341424

ABSTRACT

It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.


Subject(s)
Bacteriophages , Hylobates , Hylobatidae , Animals , Seasons , Ecosystem , Virome , Diet , Bacteriophages/genetics , Fruit
19.
Heliyon ; 10(3): e25067, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317900

ABSTRACT

In the context of growing environmental concerns and a shift towards sustainable tourism, understanding the behaviors of younger generations, particularly Generation Z, becomes crucial for the hotel industry. This study investigates the intentions of Chinese Generation Z consumers to visit green hotels, using an extended Theory of Planned Behavior (TPB) model incorporating multi-dimensional green perceived value. A questionnaire survey with 436 participants was conducted, and structural equation modeling was employed for data analysis. The study reveals that Functional value significantly shapes the inclination towards green hotels among Chinese Generation Z. Emotional value and Subjective norms also positively influence visit intentions, whereas social value, although not a significant driver, provides insights into the distinct nature of green consumption behaviors. This study's findings offer strategic insights for green hotel operators and policymakers to attract this demographic segment, emphasizing Chinese Generation Z consumers' unique preferences and values.

20.
Entropy (Basel) ; 26(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392382

ABSTRACT

The monogamy property of entanglement is an intriguing feature of multipartite quantum entanglement. Most entanglement measures satisfying the monogamy inequality have turned out to be convex. Whether nonconvex entanglement measures obey the monogamy inequalities remains less known at present. As a well-known measure of entanglement, the logarithmic negativity is not convex. We elucidate the constraints of multi-qubit entanglement based on the logarithmic convex-roof extended negativity (LCREN) and the logarithmic convex-roof extended negativity of assistance (LCRENoA). Using the Hamming weight derived from the binary vector associated with the distribution of subsystems, we establish monogamy inequalities for multi-qubit entanglement in terms of the αth-power (α≥4ln2) of LCREN, and polygamy inequalities utilizing the αth-power (0≤α≤2) of LCRENoA. We demonstrate that these inequalities give rise to tighter constraints than the existing ones. Furthermore, our monogamy inequalities are shown to remain valid for the high-dimensional states that violate the CKW monogamy inequality. Detailed examples are presented to illustrate the effectiveness of our results in characterizing the multipartite entanglement distributions.

SELECTION OF CITATIONS
SEARCH DETAIL
...