Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Xenotransplantation ; 28(4): e12691, 2021 07.
Article in English | MEDLINE | ID: mdl-33904221

ABSTRACT

BACKGROUND: A major obstacle to the success of organ transplantation from pigs to humans, necessitated by the shortage of human organs, is robust humoral immune rejection by pig-reactive human antibodies. Mixed xenogeneic hematopoietic chimerism induces xenoreactive B cell tolerance in rodents, but whether mixed pig/human chimerism could induce tolerance of human B cells to pig xenoantigens is unknown. METHODS: We investigated this question using a humanized mouse model in which durable mixed (pig-human) xenogeneic chimerism can be established. RESULTS: Human natural anti-pig cytotoxic antibodies, predominantly IgM, are detectable in non-chimeric humanized mouse serum, and pig-reactive antibodies were reduced in mixed chimeric versus non-chimeric humanized mice. This difference required persistent mixed chimerism and was not due to the adsorption of antibodies on pig cells in vivo. Furthermore, human B cells from spleens of mixed chimeric mice produced lower levels of anti-pig antibodies when stimulated in vitro compared with those from non-chimeric mice. CONCLUSIONS: Our findings demonstrate that mixed chimerism reduces human natural antibodies to pig xenoantigens, providing the first in vivo evidence of human B cell tolerance induction by mixed xenogeneic chimerism and supporting further evaluation of this approach for inducing human B cell tolerance to xenografts.


Subject(s)
Chimerism , Immune Tolerance , Animals , Antigens, Heterophile , B-Lymphocytes , Bone Marrow Transplantation , Humans , Mice , Swine , Transplantation, Heterologous
2.
Sci Immunol ; 2(12)2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28783662

ABSTRACT

CD4+FOXP3+ regulatory T (Treg) cells are critical mediators of immune tolerance, and their deficiency owing to FOXP3 mutations in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) patients results in severe autoimmunity. Different FOXP3 mutations result in a wide range of disease severity, reflecting the relative importance of the affected residues in the integrity of the FOXP3 protein and its various molecular interactions. We characterized the cellular and molecular impact of the most common IPEX mutation, p.A384T, on patient-derived Treg cells. We found that the p.A384T mutation abrogated the suppressive capacity of Treg cells while preserving FOXP3's ability to repress inflammatory cytokine production. This selective functional impairment is partly due to a specific disruption of FOXP3A384T binding to the histone acetyltransferase Tat-interacting protein 60 (TIP60) (KAT5) and can be corrected using allosteric modifiers that enhance FOXP3-TIP60 interaction. These findings reveal the functional impact of TIP60 in FOXP3-driven Treg biology and provide a potential target for therapeutic manipulation of Treg activity.

3.
Oncoimmunology ; 5(2): e1004983, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27057424

ABSTRACT

CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) are an important population of innate regulatory cells mainly comprising monocytic MDSCs (M-MDSCs) with a phenotype of CD11b+Ly6G-Ly6Chigh and granulocytic MDSCs (G-MDSCs) with a phenotype of CD11b+Ly6G+Ly6Clow in mice. They play crucial roles in the pathogenesis of cancers, chronic infections, autoimmune diseases, and transplantation. Various extracellular factors such as lipopolysaccharide (LPS), macrophage colony-stimulating factor (M-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), interleukin (IL)-6, interferon gamma (IFNγ), IL-1ß, vascular endothelial growth factor (VEGF), Hsp72, IL-13, C5a, and prostaglandin E2 (PGE2) can induce MDSC differentiation, whereas IL-4 and all-trans-retinoic acid can inhibit this process. For the intracellular signals, signal transducer and activator of transcription (STAT) family members, C/EBPß and cyclooxigenase-2 (COX-2) promote MDSC function, whereas interferon regulatory factor-8 (IRF-8) and Smad3 downregulate MDSC activity. The immunosuppressive function of MDSCs is mediated through various effector molecules, primarily cellular metabolism-related molecules such as nitric oxide (NO), arginase, reactive oxygen species (ROS), transforming growth factor ß (TGFß), IL-10, indoleamine 2,3-dioxygenase (IDO), heme oxygenase-1 (HO-1), carbon monoxide (CO), and PGE2. In this article, we will summarize the molecules involved in the induction and function of MDSCs as well as the regulatory pathways of MDSCs.

4.
J Immunol ; 195(3): 1282-92, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26085679

ABSTRACT

Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Reaction/immunology , Inflammation/immunology , Lymphocyte Activation/immunology , Animals , Apoptosis/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/transplantation , Cell Proliferation , Female , Immunologic Memory/immunology , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/biosynthesis , Radiation Chimera/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...