Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
ACS Biomater Sci Eng ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775700

ABSTRACT

Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 µm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.

2.
Nature ; 628(8009): 771-775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632399

ABSTRACT

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.


Subject(s)
Colloids , Single Molecule Imaging , Spectrum Analysis, Raman , Colloids/chemistry , Hydroxylamine/chemistry , Metal Nanoparticles/chemistry , Poisson Distribution , Proof of Concept Study , Reproducibility of Results , Silver/chemistry , Single Molecule Imaging/methods , Single Molecule Imaging/standards , Spectrum Analysis, Raman/methods , Spectrum Analysis, Raman/standards , Vibration
3.
Sci Data ; 11(1): 43, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184632

ABSTRACT

The faithful transmission of a cell's identity and functionality to its daughters during mitosis requires the proper assembly of mitotic chromosomes from interphase chromatin in a process that involves significant changes in the genome-bound material, including the RNA. However, our understanding of the RNA that is associated with the mitotic chromosome is presently limited. Here, we present complete and quantitative characterizations of the full-length mitotic chromosome-associated RNAs (mCARs) for 3 human cell lines, a monkey cell line, and a mouse cell line derived from high-depth RNA sequencing (3 replicates, 47 M mapped read pairs for each replicate). Overall, we identify, on average, more than 20,400 mCAR species per cell-type (including isoforms), more than 5,200 of which are enriched on the chromosome. Notably, overall, more than 2,700 of these mCARs were previously unknown, which thus also expands the annotated genome of these species. We anticipate that these datasets will provide an essential resource for future studies to better understand the functioning of mCARs on the mitotic chromosome and in the cell.


Subject(s)
Chromatin , Mammals , RNA , Animals , Humans , Mice , Cell Line , Mitosis
4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958853

ABSTRACT

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.


Subject(s)
Microscopy , Nucleosomes , Humans , Centromere Protein A/genetics , Chromosomal Proteins, Non-Histone/metabolism , Centromere/metabolism , Chromatin , Kinetochores/metabolism , Autoantigens/chemistry
5.
Biosci Trends ; 17(5): 393-400, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37778979

ABSTRACT

The histone variant macroH2A has been found to play important regulatory roles in genomic processes, especially in regulating transcriptomes. However, whether macroH2A nucleosomes are retained on mitotic chromosomes to enable maintenance of cell-specific transcriptomes is not known. Here, examining mouse embryonic fibroblast cells (NIH-3T3) with native chromatin immunoprecipitation and sequencing (nChIP-seq), we show that the overwhelming majority (~90%) of macroH2A1 domains identified at the G1/S stage are indeed stably retained on mitotic chromosomes. Unexpectedly though, we also find that there are a number of macroH2A domains that are specific for either mitotic or G1/S cells. Notably, more than 7,000 interphase expressed genes flanked by macroH2A1 domains are loaded with macroH2A1 nucleosomes on the mitotic chromosome to form extended domains. Overall, these results reveal that, while the majority of macroH2A1 domains are indeed faithfully transmitted through the mitotic chromosomes, there is a previously unknown cell-cycle dependent exchange of macroH2A1 nucleosomes at numerous genomic loci, indicating the existence of molecular machineries for this dynamically regulated process. We anticipate that these findings will prove to be essential for the integrity of mitotic progression and the maintenance of cellular identity.


Subject(s)
Histones , Nucleosomes , Animals , Mice , Histones/genetics , Nucleosomes/genetics , Fibroblasts , Cell Cycle/genetics , Cell Division , Mammals
6.
Nat Chem ; 15(11): 1559-1568, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814114

ABSTRACT

The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty-leading to similar properties-are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Crystallography, X-Ray , Molecular Conformation , Amides/chemistry , Anions/chemistry
7.
Methods Appl Fluoresc ; 11(4)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37647910

ABSTRACT

The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.


Subject(s)
Microscopy , Single Molecule Imaging , Chromatin , Fluorescent Dyes , Ionophores
8.
FEBS Lett ; 597(3): 418-426, 2023 02.
Article in English | MEDLINE | ID: mdl-36285639

ABSTRACT

Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , Gene Expression Profiling/methods , Gastric Mucosa , Laser Capture Microdissection/methods , Mammals
9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555471

ABSTRACT

The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.


Subject(s)
Monocytes , Transcription Factors , Humans , Monocytes/metabolism , Transcription Factors/metabolism , Macrophages/metabolism , Cell Differentiation/physiology , Cell Transdifferentiation/genetics
10.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430462

ABSTRACT

Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics with epigenetic marks and dUTP-containing DNA fragments during conventional ChIP procedures (hereafter referred to as 2cChIP-seq), thus dramatically improving immunoprecipitation efficiency and reducing DNA loss of low-input ChIP-seq samples. Using this strategy, we generated high-quality epigenomic profiles of histone modifications or DNA methylation in 10-1000 cells. By introducing Tn5 transposase-assisted fragmentation, 2cChIP-seq reliably captured genomic regions with histone modification at the single-cell level in about 100 cells. Moreover, we characterized the methylome of 100 differentiated female germline stem cells (FGSCs) and observed a particular DNA methylation signature potentially involved in the differentiation of mouse germline stem cells. Hence, we provided a reliable and robust epigenomic profiling approach for small cell numbers and single cells.


Subject(s)
DNA , Epigenomics , Mice , Animals , Epigenomics/methods , Sequence Analysis, DNA/methods , DNA/chemistry , DNA Methylation , Cell Count
11.
Cell Biol Toxicol ; 38(6): 1175-1197, 2022 12.
Article in English | MEDLINE | ID: mdl-36085230

ABSTRACT

With improvements in the survival rate of patients with cancer, fertility maintenance has become a major concern in terms of cancer treatment for women of reproductive age. Thus, it is important to examine the impact on fertility of anticancer drugs that are used clinically or are undergoing trials. The HuR small-molecule inhibitor MS-444 has been used in many cancer treatment studies, but its reproductive toxicity in females is unknown. Here, we reported that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization, resulting in the developmental arrest of 2-cell stage embryos in mouse. Combining analysis of low-input RNA-seq for MS-444-treated 2-cell embryos and mapping binding sites of RNA-binding protein, Agbl2 was predicted to be the target gene of MS-444. For further confirmation, RNAi experiment in wild-type zygotes showed that Agbl2 knockdown reduced the proportion of embryos successfully developed to the blastocyst stage: from 71% in controls to 23%. Furthermore, RNA-FISH and luciferase reporter analyses showed that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA and reduced its stability by inhibiting HuR dimerization. In addition, optimized stochastic optical reconstruction microscopy (STORM) imaging showed that MS-444 significantly reduced the HuR dimerization, and HuR mainly existed in cluster form in 2-cell stage embryos. In conclusion, this study provides clinical guidance for maintaining fertility during the treatment of cancer with MS-444 in women of reproductive age. And also, our research provides guidance for the application of STORM in nanometer scale studies of embryonic cells. HuR inhibitor MS-444 arrested embryonic development at 2-cell stage. Low-input RNA-seq revealed that Agbl2 was the target gene of MS-444. MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization and reduced the stability of Agbl2 mRNA. STORM with our optimized protocol showed that HuR tended to form elliptical and dense clusters in 2-cell stage embryos.


Subject(s)
ELAV-Like Protein 1 , Microscopy , Female , Mice , Animals , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , RNA-Seq , RNA, Messenger/genetics , RNA, Messenger/metabolism , Embryonic Development/genetics
13.
Front Cell Dev Biol ; 10: 853188, 2022.
Article in English | MEDLINE | ID: mdl-35399504

ABSTRACT

The functioning of tissues is fundamentally dependent upon not only the phenotypes of the constituent cells but also their spatial organization in the tissue, as local interactions precipitate intra-cellular events that often lead to changes in expression. However, our understanding of these processes in tissues, whether healthy or diseased, is limited at present owing to the difficulty in acquiring comprehensive transcriptional programs of spatially- and phenotypically-defined cells in situ. Here we present a robust method based on immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) to acquire finely resolved transcriptional programs with as few as tens of cells from snap-frozen or RNAlater-treated clinical tissues sufficient to resolve even isoforms. The protocol is optimized to protect the RNA with a small molecule inhibitor, the ribonucleoside vanadyl complex (RVC), which thereby enables the typical time-consuming immunostaining and laser capture steps of this procedure during which RNA is usually severely degraded in existing approaches. The efficacy of this approach is exemplified by the characterization of differentially expressed genes between the mouse small intestine lacteal cells at the tip versus the main capillary body, including those that function in sensing and responding to local environmental cues to stimulate intra-cellular signalling. With the extensive repertoire of specific antibodies that are presently available, our method provides an unprecedented capability for the analysis of transcriptional networks and signalling pathways during development, pathogenesis, and aging of specific cell types within native tissues.

14.
ACS Nano ; 16(5): 8030-8039, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35485433

ABSTRACT

The folding of interphase chromatin into highly compact mitotic chromosomes is one of the most recognizable changes during the cell cycle. However, the structural organization underlying this drastic compaction remains elusive. Here, we combine several super resolution methods, including structured illumination microscopy (SIM), binding-activated localization microscopy (BALM), and atomic force microscopy (AFM), to examine the structural details of the DNA within the mitotic chromosome, both in the native state and after up to 30-fold extension using single-molecule micromanipulation. Images of native chromosomes reveal widespread ∼125 nm compact granules (CGs) throughout the metaphase chromosome. However, at maximal extensions, we find exclusively ∼90 nm domains (mitotic nanodomains, MNDs) that are unexpectedly resistant to extensive forces of tens of nanonewtons. The DNA content of the MNDs is estimated to be predominantly ∼80 kb, which is comparable to the size of the inner loops predicted by a recent nested loop model of the mitotic chromosome. With this DNA content, the total volume expected of the human genome assuming closely packed MNDs is nearly identical to what is observed. Thus, altogether, these results suggest that these mechanically stable MNDs, and their higher-order assembly into CGs, are the dominant higher-level structures that underlie the compaction of chromatin from interphase to metaphase.


Subject(s)
Chromatin , Chromosomes , Humans , Chromosomes/metabolism , Metaphase , DNA/metabolism , Micromanipulation
15.
Genomics Proteomics Bioinformatics ; 20(1): 101-109, 2022 02.
Article in English | MEDLINE | ID: mdl-33631432

ABSTRACT

Recent studies have characterized the genomic structures of many eukaryotic cells, often focusing on their relation to gene expression. However, these studies have largely investigated cells grown in 2D cultures, although the transcriptomes of 3D-cultured cells are generally closer to their in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably in compartment identity and strength as well as in topologically associating domain (TAD)-TAD interactions, but only minor differences are found at the TAD level. Our RNA-seq analysis reveals an up-regulated expression of genes involved in physiological hepatocyte functions in the 3D-cultured cells. These genes are associated with a subset of structural changes, suggesting that differences in genomic structure are critically important for transcriptional regulation. However, there are also many structural differences that are not directly associated with changes in gene expression, whose cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters higher-order genomic interactions, which may be consequential for a subset of genes that are important for the physiological functioning of the cell.


Subject(s)
Genome , Genomics , Animals , Cell Line , Chromatin , Epithelial Cells , Gene Expression Regulation , Mice
17.
ACS Cent Sci ; 7(12): 2092-2098, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34963901

ABSTRACT

There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.

18.
Hereditas ; 158(1): 43, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34740370

ABSTRACT

Immortalized cell lines have long been used as model systems to systematically investigate biological processes under controlled and reproducible conditions, providing insights that have greatly advanced cellular biology and medical sciences. Recently, the widely used monocytic leukemia cell line, THP-1, was comprehensively examined to understand mechanistic relationships between the 3D chromatin structure and transcription during the trans-differentiation of monocytes to macrophages. To corroborate these observations in primary cells, we analyze in situ Hi-C and RNA-seq data of human primary monocytes and their differentiated macrophages in comparison to that obtained from the monocytic/macrophagic THP-1 cells. Surprisingly, we find significant differences between the primary cells and the THP-1 cells at all levels of chromatin structure, from loops to topologically associated domains to compartments. Importantly, the compartment-level differences correlate significantly with transcription: those genes that are in A-compartments in the primary cells but are in B-compartments in the THP-1 cells exhibit a higher level of expression in the primary cells than in the THP-1 cells, and vice versa. Overall, the genes in these different compartments are enriched for a wide range of pathways, and, at least in the case of the monocytic cells, their altered expression in certain pathways in the THP-1 cells argues for a less immune cell-like phenotype, suggesting that immortalization or prolonged culturing of THP-1 caused a divergence of these cells from their primary counterparts. It is thus essential to reexamine phenotypic details observed in cell lines with their primary counterparts so as to ensure a proper understanding of functional cell states in vivo.


Subject(s)
Monocytes , Transcriptome , Cell Differentiation , Humans , Macrophages , THP-1 Cells
19.
Adv Sci (Weinh) ; 8(24): e2102989, 2021 12.
Article in English | MEDLINE | ID: mdl-34708576

ABSTRACT

Mechanistic understanding of how living systems sense, transduce, and respond to mechanical cues has important implications in development, physiology, and therapy. Here, the authors use an integrated atomic force microscope (AFM) and brightfield/epifluorescent microscope platform to precisely simulate living single cells or groups of cells under physiological conditions, in real time, concomitantly measuring the single-cell autophagic response and its transmission to neighboring cells. Dual-color fluorescence monitoring of the cellular autophagic response reveals the dynamics of autophagosome formation, degradation, and induction in neighboring contacting and noncontacting cells. Autophagosome formation is dependent on both the applied force and contact area of the AFM tip. More importantly, the enhancement of the autophagic responses in neighboring cells via a gap junction-dependent mechanism is observed. This AFM-based nanoacupuncture platform can serve as a tool for elucidating the primary mechanism underlying mechanical stimulation of living systems and other biomechanical therapeutics.


Subject(s)
Autophagy/physiology , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force/methods , Nanotechnology/methods , Plasmids/administration & dosage , Cells, Cultured , Fluorescence , Microscopy, Fluorescence
20.
Biomaterials ; 276: 121070, 2021 09.
Article in English | MEDLINE | ID: mdl-34418817

ABSTRACT

Sentinel lymph node (SLN) imaging and biopsy has been advocated as an important technique to evaluate the metastatic status of regional lymph nodes and determine subsequent surgical procedure for many cancers, yet there is no reliable means to provide accurate and rapid diagnosis of metastatic SLN during surgery. Here we develop a new approach, named "Ratiometric Raman dual-nanotag strategy", that using folic acid functionalized targeted and nontargeted gap-enhanced Raman tags (FA-GERTs and Nt-GERTs) to detect metastatic SLN based on Raman imaging combined with classical least square data processing methods. By using this strategy, with built-in self-calibration for signal correction, rather than absolute intensity-dependent signal readout, we realize the visualization and prompt intraoperative diagnosis of metastatic SLN with a high accuracy of 87.5 % when the cut-off value of ratio (FA-GERTs/Nt-GERTs) set at 1.255. This approach may outperform the existing histopathological assessment in diagnosing SLN metastasis and is promising for guiding surgical procedure in the future.


Subject(s)
Sentinel Lymph Node , Diagnostic Imaging , Humans , Lymph Nodes , Lymphatic Metastasis , Sentinel Lymph Node Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...