Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34273642

ABSTRACT

The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.


Subject(s)
Moths , Receptors, Odorant , Wasps , Animals , Arthropod Antennae/metabolism , Carrier Proteins , Gene Expression Profiling , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/metabolism , Odorants , Phylogeny , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Transcriptome , Wasps/genetics
2.
Insects ; 12(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924270

ABSTRACT

Glyphodes pyloalis Walker (G. pyloalis) is a serious pest on mulberry. Due to the increasing pesticide resistance, the development of new and effective environmental methods to control G. pyloalis is needed. Trehalase is an essential enzyme in trehalose hydrolysis and energy supply, and it has been considered a promising target for insect pest control. However, the specific function of trehalase in G. pyloalis has not been reported. In this study, two trehalase genes (GpTre1 and GpTre2) were identified from our previous transcriptome database. The functions of the trehalase in chitin metabolism were studied by injecting larvae with dsRNAs and trehalase inhibitor, Validamycin A. The open reading frames (ORFs) of GpTre1 and GpTre2 were 1,704 bp and 1,869 bp, which encoded 567 and 622 amino acid residues, respectively. Both of GpTre1 and GpTre2 were mainly expressed in the head and midgut. The highest expression levels of them were in 5th instar during different development stages. Moreover, knockdown both of GpTre1 and GpTre2 by the dsRNAs led to significantly decreased expression of chitin metabolism pathway-related genes, including GpCHSA, GpCDA1, GpCDA2, GpCHT3a, GpCHT7, GpCHSB, GpCHT-h, GpCHT3b, GpPAGM, and GpUAP, and abnormal phenotypes. Furthermore, the trehalase inhibitor, Validamycin A, treatment increased the expressions of GpTre1 and GpTre2, increased content of trehalose, and decreased the levels of glycogen and glucose. Additionally, the inhibitor caused a significantly increased cumulative mortality of G. pyloalis larvae on the 2nd (16%) to 6th (41.3%) day, and decreased the rate of cumulative pupation (72.3%) compared with the control group (95.6%). After the activities of trehalase were suppressed, the expressions of 6 integument chitin metabolism-related genes decreased significantly at 24 h and increased at 48 h. The expressions of GpCHSB and GpCHT-h, involved in chitin metabolism pathway of peritrophic membrane in the midgut, increased at 24 h and 48 h, and there were no changes to GpCHT3b and GpPAGM. These results reveal that GpTre1 and GpTre2 play an essential role in the growth of G. pyloalis by affecting chitin metabolism, and this provides useful information for insect pest control in the future.

3.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629944

ABSTRACT

Glyphodes pyloalis Walker (G. pyloalis) causes significant damage to mulberry every year, and we currently lack effective and environmentally friendly ways to control the pest. Chitin synthase (CHS) is a critical regulatory enzyme related to chitin biosynthesis, which plays a vital role in the growth and development of insects. The function of CHS in G. pyloalis, however, has not been studied. In this study, two chitin synthase genes (GpCHSA and GpCHSB) were screened from our previously created transcriptome database. The complete coding sequences of the two genes are 5,955 bp and 5,896 bp, respectively. Expression of GpCHSA and GpCHSB could be detected throughout all developmental stages. Relatively high expression levels of GpCHSA occurred in the head and integument and GpCHSB was most highly expressed in the midgut. Moreover, silencing of GpCHSA and GpCHSB using dsRNA reduced expression of downstream chitin metabolism pathway genes and resulted in abnormal development and wings stretching, but did not affect normal pupating of larvae. Furthermore, the inhibitor of chitin synthesis diflubenzuron (DFB) was used to further validate the RNAi result. DFB treatment significantly improved expression of GpCHSA, except GpCHSB, and their downstream genes, and also effected G. Pyloali molting at 48 h (62% mortality rate) and 72 h (90% mortality rate), respectively. These results show that GpCHSA and GpCHSB play critical roles in the development and wing stretching in G. pyloalis adults, indicating that the genes are attractive potential pest control targets.


Subject(s)
Chitin Synthase/genetics , Moths/genetics , Animals , Chitin Synthase/metabolism , Diflubenzuron , Insect Control , Moths/enzymology , Moths/growth & development
4.
Int J Mol Sci ; 21(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164390

ABSTRACT

Glyphodes pyloalis Walker (Lepidoptera: Pyralididae) is a serious pest in the sericulture industry, which has caused damage and losses in recent years. With the widespread use of insecticides, the insecticide resistance of G. pyloalis has becomes increasingly apparent. In order to find other effective methods to control G. pyloalis, this study performed a transcriptome analysis of the midgut, integument, and whole larvae. Transcriptome data were annotated with KEGG and GO, and they have been shown to be of high quality by RT-qPCR. The different significant categories of differentially expressed genes between the midgut and the integument suggested that the transcriptome data could be used for next analysis. With the exception of Dda9 (GpCDA5), 19 genes were involved in chitin metabolism, most of which had close protein-protein interactions. Among them, the expression levels of 11 genes, including GpCHSA, GpCDA1, GpCDA2, GpCDA4, GPCHT1, GPCHT2a, GPCHT3a, GPCHT7, GpTre1, GpTre2, and GpRtv were higher in the integument than in the midgut, while the expression levels of the last eight genes, including GpCHSB, GpCDA5, GpCHT2b, GpCHT3b, GpCHT-h, GpPAGM, GpNAGK, and GpUAP, were higher in the midgut than in the integument. Moreover, 282 detoxification-related genes were identified and can be divided into 10 categories, including cytochrome P450, glutathione S-transferase, carboxylesterase, nicotinic acetylcholine receptor, aquaporin, chloride channel, methoprene-tolerant, serine protease inhibitor, sodium channel, and calcium channel. In order to further study the function of chitin metabolism-related genes, dsRNA injection knocked down the expression of GpCDA1 and GpCHT3a, resulting in the significant downregulation of its downstream genes. These results provide an overview of chitin metabolism and detoxification of G. pyloalis and lay the foundation for the effective control of this pest in the sericulture industry.


Subject(s)
Gene Expression Profiling/methods , Insect Proteins/genetics , Moths/genetics , Plant Proteins/genetics , Animals , Chitin/metabolism , Moths/metabolism , Plant Proteins/metabolism , Protein Interaction Maps , Real-Time Polymerase Chain Reaction
5.
J Insect Physiol ; 117: 103911, 2019.
Article in English | MEDLINE | ID: mdl-31279633

ABSTRACT

Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary silkworm pathogen, and the molecular mechanism of silkworm defense to BmNPV infection is still unclear. Herein, comparative metabolomics was adopted to analyze the variations in the hemolymph metabolites of different resistant silkworm strains following BmNPV inoculation using a 1H NMR method. Trehalose, as an instant source of energy, plays a crucial role in the response to pathogen infections in insects. The level of trehalose was persistently upregulated in the hemolymph of the resistant silkworm strain YeA following infection with BmNPV, compared to that of the susceptible strain YeB, indicating that trehalose metabolism plays a vital role in the response to BmNPV infection. The significant upregulation of TCA cycle relevant metabolites, including malate, fumarate, citrate, succinate, and α-ketoglutarate, was identified at 0 h, 12 h, 48 h, and 96 h post-infection in YeA hemolymph, whereas a significant upregulation in YeB hemolymph was only detected at an early stage of infection (0 h-24 h). The expression level of selected key metabolic enzymes, determined using RT-qPCR, validated the differences in trehalose and TCA cycle relevant metabolite levels. The variations in branched-chain amino acid (BCAA) pathway relevant metabolites in resistant silkworm strains following BmNPV infection showed a regular undulation at different times after infection. A significant accumulation of phenylalanine and tyrosine was observed in YeA following BmNPV infection compared to YeB. The glycolysis and gluconeogenesis pathways showed a relatively low activity in YeA following BmNPV infection. Moreover, the levels of other metabolites related to fat metabolism, transamination, energy metabolism, and glycometabolism, such as glycine, threonine, glutamine, and glutamate, were unstable in the two silkworm strains following BmNPV infection. Thus, our study provides an overview of the metabolic response of the silkworm in response to BmNPV infection, which lays the foundation for clarifying the mechanism of silkworm resistance to BmNPV infection.


Subject(s)
Bombyx/metabolism , Hemolymph/metabolism , Host-Pathogen Interactions , Nucleopolyhedroviruses/physiology , Animals , Bombyx/immunology , Bombyx/virology , Energy Metabolism , Magnetic Resonance Spectroscopy
6.
Front Microbiol ; 10: 578, 2019.
Article in English | MEDLINE | ID: mdl-30967853

ABSTRACT

The molecular mechanism of silkworm resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) infection remains unclear. The chaperonin containing t-complex polypeptide 1 (TCP-1) is essential for the folding of tubulin and actin to produce stable and functional competent protein conformation. However, little is known about this protein in silkworm. In the present study, a gene encoding the TCP-1ß protein in silkworm was characterized, which has an open reading fragment of 1,611 bp encoding a predicted 536 amino acid residue-protein with a molecular weight of approximately 57.6 kDa containing a Cpn60_TCP1 functional domain. The sequence conservation is 81.52%. The highest level of BmTCP-1ß mRNA expression was found in the midgut, while the lowest was in the hemolymph. To further study the function of BmTCP-1ß, expression was knocked down with siRNA in vitro, resulting in significant downregulation of the selected cytoskeletal-related genes, actin and tubulin, which was also confirmed by overexpression of BmTCP-1ß in BmN cells using the pIZT/V5-His-mCherry insect vector. Moreover, knockdown of BmTCP-1ß significantly prolonged the infection process of BmNPV in BmN cells, which was also verified by overexpression of BmTCP-1ß in BmN cells. Based on the results of the present study, we concluded that BmTCP-1ß plays a vital role in BmNPV infection by regulating the expression of tubulin and actin. Taken together, our work provides valuable data for the clarification of the molecular mechanism of silkworm resistance to BmNPV infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...