Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Bioorg Med Chem ; 104: 117680, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38582047

ABSTRACT

Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.


Subject(s)
Histone Deacetylase Inhibitors , Proteasome Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Endopeptidase Complex , Bortezomib , Histone Deacetylases , Histone Deacetylase 6 , Histone Deacetylase 1
2.
Adv Pharmacol ; 98: 145-178, 2023.
Article in English | MEDLINE | ID: mdl-37524486

ABSTRACT

Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Airway Remodeling , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Asthma/drug therapy , Asthma/metabolism , Lung/metabolism , Lung/pathology , Inflammation/metabolism
3.
J Hand Surg Glob Online ; 5(2): 231-233, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36974281

ABSTRACT

Seymour fractures are common injuries in the pediatric population. High rates of deep infection have been reported due to delayed presentation and subsequent treatment. This report describes the case of a 13-year-old male wrestler who presented 1 month after a finger injury that was later diagnosed as a subacute Seymour fracture with osteomyelitis. The patient underwent irrigation and debridement and fracture reduction stabilized with nonabsorbable suture fixation. After 6 weeks of intravenous antibiotics, the patient was recovering well, with radiographic evidence of fracture healing and clearance of infection. This case highlights the use of a single suture as a treatment option for fixation of unstable Seymour fractures with delayed presentation. The management of acute open distal phalangeal physeal fractures is well described in the literature; however, further investigations are warranted into the optimal management of chronically infected digits with unstable Seymour fractures.

4.
Am J Respir Cell Mol Biol ; 68(1): 23-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36067041

ABSTRACT

ERK1/2 (extracellular signal-regulated kinases 1 and 2) regulate the activity of various transcription factors that contribute to asthma pathogenesis. Although an attractive drug target, broadly inhibiting ERK1/2 is challenging because of unwanted cellular toxicities. We have identified small molecule inhibitors with a benzenesulfonate scaffold that selectively inhibit ERK1/2-mediated activation of AP-1 (activator protein-1). Herein, we describe the findings of targeting ERK1/2-mediated substrate-specific signaling with the small molecule inhibitor SF-3-030 in a murine model of house dust mite (HDM)-induced asthma. In 8- to 10-week-old BALB/c mice, allergic asthma was established by repeated intranasal HDM (25 µg/mouse) instillation for 3 weeks (5 days/week). A subgroup of mice was prophylactically dosed with 10 mg/kg SF-3-030/DMSO intranasally 30 minutes before the HDM challenge. Following the dosing schedule, mice were evaluated for alterations in airway mechanics, inflammation, and markers of airway remodeling. SF-3-030 treatment significantly attenuated HDM-induced elevation of distinct inflammatory cell types and cytokine concentrations in BAL and IgE concentrations in the lungs. Histopathological analysis of lung tissue sections revealed diminished HDM-induced pleocellular peribronchial inflammation, mucus cell metaplasia, collagen accumulation, thickening of airway smooth muscle mass, and expression of markers of cell proliferation (Ki-67 and cyclin D1) in mice treated with SF-3-030. Furthermore, SF-3-030 treatment attenuated HDM-induced airway hyperresponsiveness in mice. Finally, mechanistic studies using transcriptome and proteome analyses suggest inhibition of HDM-induced genes involved in inflammation, cell proliferation, and tissue remodeling by SF-3-030. These preclinical findings demonstrate that function-selective inhibition of ERK1/2 signaling mitigates multiple features of asthma in a murine model.


Subject(s)
Asthma , Animals , Mice , Asthma/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/metabolism , Lung/pathology , Mice, Inbred BALB C , Pyroglyphidae
5.
Mol Carcinog ; 61(9): 827-838, 2022 09.
Article in English | MEDLINE | ID: mdl-35723497

ABSTRACT

Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Neoplasms , Adenosine Triphosphate/metabolism , Antioxidants , Humans , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Neoplasms/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
6.
Blood ; 140(4): 359-373, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35436326

ABSTRACT

Although Ras/mitogen-activated protein kinase (MAPK) signaling is activated in most human cancers, attempts to target this pathway using kinase-active site inhibitors have not typically led to durable clinical benefit. To address this shortcoming, we sought to test the feasibility of an alternative targeting strategy, focused on the ERK2 substrate binding domains, D and DEF binding pocket (DBP). Disabling the ERK2-DBP domain in mice caused baseline erythrocytosis. Consequently, we investigated the role of the ERK2-D and -DBP domains in disease, using a JAK2-dependent model of polycythemia vera (PV). Of note, inactivation of the ERK2-DBP domain promoted the progression of disease from PV to myelofibrosis, suggesting that the ERK2-DBP domain normally opposes progression. ERK2-DBP inactivation also prevented oncogenic JAK2 kinase (JAK2V617F) from promoting oncogene-induced senescence in vitro. The ERK2-DBP mutation attenuated JAK2-mediated oncogene-induced senescence by preventing the physical interaction of ERK2 with the transcription factor Egr1. Because inactivation of the ERK2-DBP created a functional ERK2 kinase limited to binding substrates through its D domain, these data suggested that the D domain substrates were responsible for promoting oncogene-induced progenitor growth and tumor progression and that pharmacologic targeting of the ERK2-D domain may attenuate cancer cell growth. Indeed, pharmacologic agents targeting the ERK2-D domain were effective in attenuating the growth of JAK2-dependent myeloproliferative neoplasm cell lines. Taken together, these data indicate that the ERK-D and -DBP domains can play distinct roles in the progression of neoplasms and that the D domain has the potential to be a potent therapeutic target in Ras/MAPK-dependent cancers.


Subject(s)
Janus Kinase 2 , Polycythemia Vera , Animals , Cell Line , Humans , Janus Kinase 2/genetics , MAP Kinase Signaling System , Mice , Mitogen-Activated Protein Kinases , Phosphorylation , Signal Transduction
7.
ACS Omega ; 7(4): 3293-3311, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128241

ABSTRACT

Extracellular signal-regulated kinase-1/2 (ERK1/2) pathway inhibitors are important therapies for treating many cancers. However, acquired resistance to most protein kinase inhibitors limits their ability to provide durable responses. Approximately 50% of malignant melanomas contain activating mutations in BRAF, which promotes cancer cell survival through the direct phosphorylation of the mitogen-activated protein kinase MAPK/ERK 1/2 (MEK1/2) and the activation of ERK1/2. Although the combination treatment with BRAF and MEK1/2 inhibitors is a recommended approach to treat melanoma, the development of drug resistance remains a barrier to achieving long-term patient benefits. Few studies have compared the global proteomic changes in BRAF/MEK1/2 inhibitor-resistant melanoma cells under different growth conditions. The current study uses high-resolution label-free mass spectrometry to compare relative protein changes in BRAF/MEK1/2 inhibitor-resistant A375 melanoma cells grown as monolayers or spheroids. While approximately 66% of proteins identified were common in the monolayer and spheroid cultures, only 6.2 or 3.6% of proteins that significantly increased or decreased, respectively, were common between the drug-resistant monolayer and spheroid cells. Drug-resistant monolayers showed upregulation of ERK-independent signaling pathways, whereas drug-resistant spheroids showed primarily elevated catabolic metabolism to support oxidative phosphorylation. These studies highlight the similarities and differences between monolayer and spheroid cell models in identifying actionable targets to overcome drug resistance.

8.
Pharmaceutics ; 13(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34834256

ABSTRACT

Inflammation is a key homeostatic process involved in the body's response to a multitude of disease states including infection, autoimmune disorders, cancer, and other chronic conditions. When the initiating event is poorly controlled, severe inflammation and globally dysregulated immune responses can occur. To address the lack of therapies that efficaciously address the multiple aspects of the dysregulated immune response, we developed cargo-less immunomodulatory nanoparticles (iNPs) comprised of poly(lactic acid) (PLA) with either poly(vinyl alcohol) (PVA) or poly(ethylene-alt-maleic acid) (PEMA) as stabilizing surfactants and investigated the mechanisms by which they exert their inherent anti-inflammatory effects. We identified that iNPs leverage a multimodal mechanism of action by physically interfering with the interactions between pathogen-associated molecular patterns (PAMPs) and bone marrow-derived macrophages (BMMΦs). Additionally, we showed that iNPs mitigate proinflammatory cytokine secretions induced by LPS via a time- and composition-dependent abrogation of NF-κB p65 and p38 MAPK activation. Lastly, inhibition studies were performed to establish the role of a pH-sensing G-protein-coupled receptor, GPR68, on contributing to the activity of iNPs. These data provide evidence for the multimodal mechanism of action of iNPs and establish their potential use as a novel therapeutic for the treatment of severe inflammation.

9.
FASEB J ; 35(12): e22016, 2021 12.
Article in English | MEDLINE | ID: mdl-34784434

ABSTRACT

Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.


Subject(s)
Airway Remodeling , Asthma/pathology , Respiratory Hypersensitivity/pathology , Tretinoin/metabolism , Adult , Allergens/toxicity , Animals , Asthma/etiology , Asthma/metabolism , Case-Control Studies , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Receptors, Retinoic Acid/agonists , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/metabolism , Retinoic Acid Receptor gamma
10.
J Pharmacol Exp Ther ; 376(1): 84-97, 2021 01.
Article in English | MEDLINE | ID: mdl-33109619

ABSTRACT

Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.


Subject(s)
Antineoplastic Agents/chemistry , MAP Kinase Signaling System/drug effects , Melanoma/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Oxidative Stress , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Proliferation/drug effects , HeLa Cells , Humans , Jurkat Cells , Mitogen-Activated Protein Kinase 1/chemistry , Protein Binding , Proto-Oncogene Mas , Proto-Oncogene Proteins B-raf/genetics
11.
Oncotarget ; 11(43): 3863-3885, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33196708

ABSTRACT

Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and ß subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.

12.
Curr Opin Pharmacol ; 51: 11-18, 2020 04.
Article in English | MEDLINE | ID: mdl-32361678

ABSTRACT

Chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and asthma, are major causes of death and reduced quality of life. Characteristic of chronic pulmonary disease is excessive lung inflammation that occurs in response to exposure to inhaled irritants, chemicals, and allergens. Chronic inflammation leads to remodeling of the airways that includes excess mucus secretion, proliferation of smooth muscle cells, increased deposition of extracellular matrix proteins and fibrosis. Protein kinases have been implicated in mediating inflammatory signals and airway remodeling associated with reduced lung function in chronic pulmonary disease. This review will highlight the role of protein kinases in the lung during chronic inflammation and examine opportunities to use protein kinase inhibitors for the treatment of chronic pulmonary diseases.


Subject(s)
Lung Diseases, Obstructive/drug therapy , Lung Diseases, Obstructive/enzymology , Lung/drug effects , Lung/enzymology , Protein Kinase Inhibitors/therapeutic use , Airway Remodeling/drug effects , Airway Remodeling/physiology , Animals , Humans , Lung/immunology , Lung Diseases, Obstructive/immunology , Muscle, Smooth/drug effects , Muscle, Smooth/enzymology , Muscle, Smooth/immunology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/immunology , Protein Kinase Inhibitors/pharmacology , Treatment Outcome
13.
FASEB J ; 33(10): 10833-10843, 2019 10.
Article in English | MEDLINE | ID: mdl-31266368

ABSTRACT

Increased airway smooth muscle (ASM) cell mass and secretory functions are characteristics of airway inflammatory diseases, such as asthma. To date, there are no effective therapies to combat ASM cell proliferation, which contributes to bronchoconstriction and airway obstruction. Growth factors such as platelet-derived growth factor (PDGF) and the activation of the ERK1/2 are major regulators of ASM cell proliferation and airway remodeling in asthma. However, given the ubiquitous expression and multiple functions of ERK1/2, complete inhibition of ERK1/2 using ATP-competitive inhibitors may lead to unwanted off-target effects. Alternatively, we have identified compounds that are designed to target substrate docking sites and act as function-selective inhibitors of ERK1/2 signaling. Here, we show that both function-selective and ATP-competitive ERK1/2 inhibitors are effective at inhibiting PDGF-mediated proliferation, collagen production, and IL-6 secretion in ASM cells. Proteomic analysis revealed that both types of inhibitors had similar effects on reducing proteins related to TGF-ß and IL-6 signaling that are relevant to airway remodeling. However, function-selective ERK1/2 inhibitors caused fewer changes in protein expression compared with ATP-competitive inhibitors. These studies provide a molecular basis for the development of function-selective ERK1/2 inhibitors to mitigate airway remodeling in asthma with defined regulation of ERK1/2 signaling.-Defnet, A. E., Huang, W., Polischak, S., Yadav, S. K., Kane, M. A., Shapiro, P., Deshpande, D. A. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation.


Subject(s)
Bronchi/cytology , Bronchi/metabolism , MAP Kinase Signaling System , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Adenosine Triphosphate/metabolism , Airway Remodeling/drug effects , Asthma/metabolism , Asthma/pathology , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression/drug effects , Humans , MAP Kinase Signaling System/drug effects , Myocytes, Smooth Muscle/drug effects , Platelet-Derived Growth Factor/pharmacology , Protein Kinase Inhibitors/pharmacology , Transcription Factor AP-1/metabolism
14.
J Biol Chem ; 294(34): 12624-12637, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31213525

ABSTRACT

Febrile-range hyperthermia worsens and hypothermia mitigates lung injury, and temperature dependence of lung injury is blunted by inhibitors of p38 mitogen-activated protein kinase (MAPK). Of the two predominant p38 isoforms, p38α is proinflammatory and p38ß is cytoprotective. Here, we analyzed the temperature dependence of p38 MAPK activation, substrate interaction, and tertiary structure. Incubating HeLa cells at 39.5 °C stimulated modest p38 activation, but did not alter tumor necrosis factor-α (TNFα)-induced p38 activation. In in vitro kinase assays containing activated p38α and MAPK-activated kinase-2 (MK2), MK2 phosphorylation was 14.5-fold greater at 39.5 °C than at 33 °C. By comparison, we observed only 3.1- and 1.9-fold differences for activating transcription factor-2 (ATF2) and signal transducer and activator of transcription-1α (STAT1α) and a 7.7-fold difference for p38ß phosphorylation of MK2. The temperature dependence of p38α:substrate binding affinity, as measured by surface plasmon resonance, paralleled substrate phosphorylation. Hydrogen-deuterium exchange MS (HDX-MS) of p38α performed at 33, 37, and 39.5 °C indicated temperature-dependent conformational changes in an α helix near the common docking and glutamate:aspartate substrate-binding domains at the known binding site for MK2. In contrast, HDX-MS analysis of p38ß did not detect significant temperature-dependent conformational changes in this region. We observed no conformational changes in the catalytic domain of either isoform and no corresponding temperature dependence in the C-terminal p38α-interacting region of MK2. Because MK2 participates in the pathogenesis of lung injury, the observed changes in the structure and function of proinflammatory p38α may contribute to the temperature dependence of acute lung injury.


Subject(s)
Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/metabolism , Temperature , Cells, Cultured , Humans , Phosphorylation , Protein Binding , Protein Conformation , Substrate Specificity , Surface Plasmon Resonance
15.
J Biol Chem ; 294(21): 8674-8675, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127063

ABSTRACT

Deregulated kinase signaling networks drive the growth and survival of many cancer cells. However, the genetic complexity and rapidly evolving nature of most cancer cells create challenges when identifying the most relevant kinases to inhibit to achieve optimal therapeutic benefits. A new strategy that takes advantage of a well-characterized multitargeted kinase inhibitor describes a nongenetic approach to tease out key kinases that promote proliferation of specific cancer cell types.


Subject(s)
Neoplasm Proteins/antagonists & inhibitors , Neoplasms/enzymology , Protein Kinase Inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Cell Survival , Humans , Neoplasm Proteins/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism
16.
Oncotarget ; 9(60): 31560-31561, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30167074
17.
Mol Cancer Ther ; 16(11): 2351-2363, 2017 11.
Article in English | MEDLINE | ID: mdl-28939558

ABSTRACT

Aberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting. Here we report the discovery of BVD-523 (ulixertinib), a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and ERK1/2 selectivity. In vitro BVD-523 treatment resulted in reduced proliferation and enhanced caspase activity in sensitive cells. Interestingly, BVD-523 inhibited phosphorylation of target substrates despite increased phosphorylation of ERK1/2. In in vivo xenograft studies, BVD-523 showed dose-dependent growth inhibition and tumor regression. BVD-523 yielded synergistic antiproliferative effects in a BRAFV600E-mutant melanoma cell line xenograft model when used in combination with BRAF inhibition. Antitumor activity was also demonstrated in in vitro and in vivo models of acquired resistance to single-agent and combination BRAF/MEK-targeted therapy. On the basis of these promising results, these studies demonstrate BVD-523 holds promise as a treatment for ERK-dependent cancers, including those whose tumors have acquired resistance to other treatments targeting upstream nodes of the MAPK pathway. Assessment of BVD-523 in clinical trials is underway (NCT01781429, NCT02296242, and NCT02608229). Mol Cancer Ther; 16(11); 2351-63. ©2017 AACR.


Subject(s)
Aminopyridines/administration & dosage , Melanoma/drug therapy , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Pyrroles/administration & dosage , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Signaling System/drug effects , Melanoma/genetics , Melanoma/pathology , Mice , Mutation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Xenograft Model Antitumor Assays
18.
J Biol Chem ; 292(33): 13890-13901, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28655760

ABSTRACT

The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays a key role in importing citrate from the circulation into liver cells. Recent evidence has revealed that SLC13A5 deletion protects mice from high-fat diet-induced hepatic steatosis and that mutation of the SLC13A5 orthologues in Drosophila melanogaster and Caenorhabditis elegans promotes longevity. However, despite the emerging importance of SLC13A5 in energy homeostasis, whether perturbation of SLC13A5 affects the metabolism and malignancy of hepatocellular carcinoma is unknown. Here, we sought to determine whether SLC13A5 regulates hepatic energy homeostasis and proliferation of hepatoma cells. RNAi-mediated silencing of SLC13A5 expression in two human hepatoma cell lines, HepG2 and Huh7, profoundly suppressed cell proliferation and colony formation, and induced cell cycle arrest accompanied by increased expression of cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin B1. Furthermore, such suppressive effects were also observed on the growth of HepG2 cell-derived xenografts expressing SLC13A5-shRNA in nude mice. Metabolically, knockdown of SLC13A5 in HepG2 and Huh7 cells was associated with a decrease in intracellular levels of citrate, the ratio of ATP/ADP, phospholipid content, and ATP citrate lyase expression. Moreover, both in vitro and in vivo assays demonstrated that SLC13A5 depletion promotes activation of the AMP-activated protein kinase, which was accompanied by deactivation of oncogenic mechanistic target of rapamycin signaling. Together, our findings expand the role of SLC13A5 from facilitating hepatic energy homeostasis to influencing hepatoma cell proliferation and suggest a potential role of SLC13A5 in the progression of human hepatocellular carcinoma.


Subject(s)
Energy Metabolism , Hepatoblastoma/therapy , Liver Neoplasms/therapy , Neoplasm Proteins/antagonists & inhibitors , RNAi Therapeutics , Symporters/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Hepatoblastoma/metabolism , Hepatoblastoma/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Nude , Neoplasm Proteins/agonists , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA Interference , RNA, Small Interfering , Specific Pathogen-Free Organisms , Symporters/genetics , Symporters/metabolism , Tumor Burden , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
19.
Animals (Basel) ; 7(5)2017 May 15.
Article in English | MEDLINE | ID: mdl-28505141

ABSTRACT

In this paper, the Humane Society of the United States (HSUS) farm animal protection work over the preceding decade is described from the perspective of the organization. Prior to 2002, there were few legal protections for animals on the farm, and in 2005, a new campaign at the HSUS began to advance state ballot initiatives throughout the country, with a decisive advancement in California (Proposition 2) that paved the way for further progress. Combining legislative work with undercover farm and slaughterhouse investigations, litigation and corporate engagement, the HSUS and fellow animal protection organizations have made substantial progress in transitioning the veal, pork and egg industries away from intensive confinement systems that keep the animals in cages and crates. Investigations have become an important tool for demonstrating widespread inhumane practices, building public support and convincing the retail sector to publish meaningful animal welfare policies. While federal legislation protecting animals on the farm stalled, there has been steady state-by-state progress, and this is complemented by major brands such as McDonald's and Walmart pledging to purchase only from suppliers using cage-free and crate-free animal housing systems. The evolution of societal expectations regarding animals has helped propel the recent wave of progress and may also be driven, in part, by the work of animal protection organizations.

20.
J Immunol ; 198(8): 3296-3306, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28298524

ABSTRACT

The p38 MAPK family is composed of four kinases of which p38α/MAPK14 is the major proinflammatory member. These kinases contribute to many inflammatory diseases, but the currently available p38 catalytic inhibitors (e.g., SB203580) are poorly effective and cause toxicity. We reasoned that the failure of catalytic p38 inhibitors may derive from their activity against noninflammatory p38 isoforms (e.g., p38ß/MAPK11) and loss of all p38α-dependent responses, including anti-inflammatory, counterregulatory responses via mitogen- and stress-activated kinase (MSK) 1/2 and Smad3. We used computer-aided drug design to target small molecules to a pocket near the p38α glutamate-aspartate (ED) substrate-docking site rather than the catalytic site, the sequence of which had only modest homology among p38 isoforms. We identified a lead compound, UM101, that was at least as effective as SB203580 in stabilizing endothelial barrier function, reducing inflammation, and mitigating LPS-induced mouse lung injury. Differential scanning fluorimetry and saturation transfer difference-nuclear magnetic resonance demonstrated specific binding of UM101 to the computer-aided drug design-targeted pockets in p38α but not p38ß. RNA sequencing analysis of TNF-α-stimulated gene expression revealed that UM101 inhibited only 28 of 61 SB203580-inhibited genes and 7 of 15 SB203580-inhibited transcription factors, but spared the anti-inflammatory MSK1/2 pathway. We provide proof of principle that small molecules that target the ED substrate-docking site may exert anti-inflammatory effects similar to the catalytic p38 inhibitors, but their isoform specificity and substrate selectivity may confer inherent advantages over catalytic inhibitors for treating inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Computer-Aided Design , Endothelial Cells/drug effects , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Drug Design , Humans , Mice , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL