Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38627091

ABSTRACT

Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17ß-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.


Subject(s)
Brain , Circadian Rhythm , Estradiol , Hydrocortisone , Magnetic Resonance Imaging , Testosterone , Humans , Male , Circadian Rhythm/physiology , Estradiol/metabolism , Adult , Testosterone/metabolism , Hydrocortisone/metabolism , Magnetic Resonance Imaging/methods , Brain/physiology , Brain/metabolism , Brain/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Connectome/methods , Female , Young Adult , Neural Pathways/physiology
2.
Opt Express ; 31(25): 41351-41360, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087536

ABSTRACT

Highly efficient long-wavelength InGaN LEDs have been a research focus in nitride LEDs for their potential applications in displays and solid-state lighting. A key breakthrough has been the use of laterally injected quantum wells via naturally occurring V-defects which promote hole injection through semipolar sidewalls and help to overcome the barriers to carrier injection that plague long wavelength nitride LEDs. In this article, we study V-defect engineered LEDs on (0001) patterned sapphire substrates (PSS) and GaN on (111) Si. V-defects were formed using a 40-period InGaN/GaN superlattice and we report a packaged external quantum efficiency (EQE) of 6.5% for standard 0.1 mm2. LEDs on PSS at 600 nm. We attribute the high EQE in these LEDs to lateral injection via V-defects.

3.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37905054

ABSTRACT

Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into the means through which our endocrine system regulates dynamic properties of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the functional efficiency of large-scale brain networks in a woman sampled every 24h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6-7am and nadir between 7-8pm. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 hours across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, cortisol, and estradiol. Standardized regression analyses revealed predominantly positive associations between testosterone, cortisol, and estradiol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in Dorsal Attention and Salience/Ventral Attention Networks were coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and naturally-cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence to a comparable degree in both sexes. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are tied to patterns of whole-brain functional connectivity.

4.
Opt Express ; 31(13): 21658-21671, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381258

ABSTRACT

The intricate, siliceous exoskeleton of many marine diatoms (single-celled phytoplankton) is decorated with an array of sub-micron, quasi-ordered pores that are known to provide protective and multiple life-sustaining functions. However, the optical functionality of any given diatom valve is limited because valve geometry, composition, and ordering are genetically programmed. Nonetheless, the near- and sub-wavelength features of diatom valves provide inspiration for novel photonic surfaces and devices. Herein, we explore the optical design space for optical transmission, reflection, and scattering in diatom-like structures by computationally deconstructing the diatom frustule, assigning and nondimensionalizing Fano-resonant behavior with configurations of increasing refractive index contrast (Δn), and gauging the effects of structural disorder on the resulting optical response. Translational pore disorder, especially in higher-index materials, was found to evolve Fano resonances from near-unity reflection and transmission to modally confined, angle-independent scattering, which is key to non-iridescent coloration in the visible wavelength range. High-index, frustule-like TiO2 nanomembranes were then designed to maximize backscattering intensity and fabricated using colloidal lithography. These synthetic diatom surfaces showed saturated, non-iridescent coloration across the visible spectrum. Overall, this diatom-inspired platform could be useful in designing tailored, functional, and nanostructured surfaces for applications in optics, heterogeneous catalysis, sensing, and optoelectronics.

5.
Small ; 19(10): e2206774, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36549899

ABSTRACT

Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.

6.
Opt Express ; 30(7): 12120-12130, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473140

ABSTRACT

Deep-ultraviolet (DUV) optoelectronics require innovative light collimation and extraction schemes for wall-plug efficiency improvements. In this work, we computationally survey material limitations and opportunities for intense, wavelength-tunable DUV reflection using AlN-based periodic hole and pillar arrays. Refractive-index limitations for underlayer materials supporting reflection were identified, and MgF2 was chosen as a suitable low-index underlayer for further study. Optical resonances giving rise to intense reflection were then analyzed in AlN/MgF2 nanostructures by varying film thickness, duty cycle, and illumination incidence angle, and were categorized by the emergence of Fano modes sustained by guided mode resonances (holes) or Mie-like dipole resonances (pillars). The phase-offset conditions between complementary modes that sustain high reflectance (%R) were related to a thickness-to-pitch ratio (TPR) parameter, which depended on the geometry-specific resonant mechanism involved (e.g., guided mode vs. Mie dipole resonances) and yielded nearly wavelength-invariant behavior. A rational design space was constructed by pointwise TPR optimization for the entire DUV range (200-320 nm). As a proof of concept, this optimized phase space was used to design reflectors for key DUV wavelengths and achieved corresponding maximum %R of 85% at λ = 211 nm to >97% at λ = 320 nm.

7.
Opt Express ; 28(23): 35038-35046, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182958

ABSTRACT

Nanoscale light emitting diodes (nanoLEDs, diameter < 1 µm), with active and sacrificial multi-quantum well (MQW) layers epitaxially grown via metal organic chemical vapor deposition, were fabricated and released into solution using a combination of colloidal lithography and photoelectrochemical (PEC) etching of the sacrificial MQW layer. PEC etch conditions were optimized to minimize undercut roughness, and thus limit damage to the active MQW layer. NanoLED emission was blue-shifted ∼10 nm from as-grown (unpatterned) LED material, hinting at strain relaxation in the active InGaN MQW layer. X-ray diffraction also suggests that strain relaxation occurs upon nanopatterning, which likely results in less quantum confined Stark effect. Internal quantum efficiency of the lifted nanoLEDs was estimated at 29% by comparing photoluminescence at 292K and 14K. This work suggests that colloidal lithography, combined with chemical release, could be a viable route to produce solution-processable, high efficiency nanoscale light emitters.

8.
Opt Express ; 28(19): 28226-28233, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988098

ABSTRACT

Refractometry is a ubiquitous technique for process control and substance identification in the chemical and biomedical fields. Herein, we present an all-dielectric, wafer-scalable, and compact Fabry-Pérot microcavity (FPMC) device for refractive index (RI) sensing. The FPMC consists of a highly porous SiO2 microcavity capped with a thin, quasi-periodically patterned TiO2 hole array partial reflector that enables rapid, nanoliter-scale analyte transport to and from the sensor. Liquid (alcohols) or condensed-vapor (water from human breath) infiltration resulted in spectral redshifts up to 100 nm, highly apparent visible color change, rapid recovery (< 20 s), and RI sensitivity of up to 680 nm/RIU. The sensor can also be used in spectral or single-wavelength detection modes. Effective-medium and finite-difference time-domain optical simulations identified that Fano-resonant scattering modes induced by the quasi-periodic TiO2 outcoupling layer effectively filter higher-order Fabry-Pérot cavity modes and thereby confer an easily identifiable red-to-green color transition during analyte infiltration.

9.
Opt Express ; 27(21): 30081-30089, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684261

ABSTRACT

Strain in InGaN/GaN multiple-quantum well (MQW) light emitters was relaxed via nanopatterning using colloidal lithography and top-down plasma etching. Colloidal lithography was performed using Langmuir-Blodgett dip-coating of samples with silica particles (d = 170, 310, 690, 960 nm) and a Cl2/N2 inductively coupled plasma etch to produce nanorod structures. The InGaN/GaN MQW nanorods were characterized using X-ray diffraction (XRD) reciprocal space mapping to quantify the degree of relaxation. A peak relaxation of 32% was achieved for the smallest diameter features tested (120 nm after etching). Power-dependent photoluminescence at 13 K showed blue-shifted quantum well emission upon relaxation, which is attributed to reduction of the inherent piezoelectric field in the III-nitrides. Poisson-Schrödinger simulations of single well structures also predicted increasing spectral blueshift with strain relaxation, in agreement with experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...