Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Mol Neurosci ; 73(11-12): 976-982, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924468

ABSTRACT

Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic area where the disorder was confined.


Subject(s)
Branchio-Oto-Renal Syndrome , Intellectual Disability , Female , Humans , Branchio-Oto-Renal Syndrome/genetics , Exome , Genes, Recessive , Intellectual Disability/genetics , Mutation , Pedigree
2.
Clin Dysmorphol ; 32(4): 156-161, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37646764

ABSTRACT

Treacher Collins syndrome (TCS) is a rare disorder of craniofacial development following different patterns of inheritance. To date, mutations in four genes ( TCOF1, POLR1D, POLR1C , and POLR1B ) have been found to cause the condition. The molecular defect remains unidentified in a significant proportion of patients. In the current study, whole exome sequencing including analysis of copy number variants was applied for genetic testing of eight Egyptian patients with typical TCS phenotype, representing the first molecular analysis of TCS patients in Egypt as well as in Arab countries. Five heterozygous frameshift mutations were reported, including four variants in the TCOF1 gene (c.3676_3694delinsCTCTGG, c.3984_3985delGA, c.4366_4369delGAAA, and c.3388delC) and one variant in the POLR1D gene (c.60dupA). Four variants were novel extending the disease mutation spectrum. In three affected individuals, no variants of interest were identified in genes associated with TCS or clinically overlapping conditions. Additionally, no relevant variant was detected in genes encoding other subunits of RNA polymerase (pol) I. Molecular analysis is important to provide accurate genetic counseling. It would also contribute to reduced disease incidence. Further studies should be designed to investigate other possible etiologies when no pathogenic variants were revealed in either of the known genes.


Subject(s)
Mandibulofacial Dysostosis , Humans , Egypt , Mandibulofacial Dysostosis/diagnosis , Mandibulofacial Dysostosis/genetics , Frameshift Mutation , Genetic Counseling , Genetic Testing , DNA-Directed RNA Polymerases/genetics
3.
Clin Genet ; 104(2): 238-244, 2023 08.
Article in English | MEDLINE | ID: mdl-37055917

ABSTRACT

This study presents 46 patients from 23 unrelated Egyptian families with ALS2-related disorders without evidence of lower motor neuron involvement. Age at onset ranged from 10 months to 2.5 years, featuring progressive upper motor neuron signs. Detailed clinical phenotypes demonstrated inter- and intrafamilial variability. We identified 16 homozygous disease-causing ALS2 variants; sorted as splice-site, missense, frameshift, nonsense and in-frame in eight, seven, four, three, and one families, respectively. Seven of these variants were novel, expanding the mutational spectrum of the ALS2 gene. As expected, clinical severity was positively correlated with disease onset (p = 0.004). This work provides clinical and molecular profiles of a large single ethnic cohort of patients with ALS2 mutations, and suggests that infantile ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS) are belonged to one entity with no phenotype-genotype correlation.


Subject(s)
Guanine Nucleotide Exchange Factors , Humans , Egypt/epidemiology , Guanine Nucleotide Exchange Factors/genetics , DNA Mutational Analysis , Mutation
4.
J Genet Eng Biotechnol ; 20(1): 44, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35275316

ABSTRACT

BACKGROUND: Methyl CpG binding protein 2 (MeCP2) is essential for the normal function of mature neurons. Mutations in the MECP2 gene are the main cause of Rett syndrome (RTT). Gene mutations have been identified throughout the gene and the mutation effect is mainly correlated with its type and location. METHODS: In this study, a series of in silico algorithms were applied for analyzing the functional consequences of 3 novel gene missense mutations (D121A, S359Y, and P403S) and a rarely reported one with suspicious effect (R133H) on RettBASE. Besides, a ROC curve analysis was performed to investigate the critical factors affecting variant pathogenicity. RESULTS: (1) The ROC curve analysis for a retrieved set of MeCP2 variants showed that physicochemical characters do not significantly affect variant pathogenicity; (2) PREM PDI tool revealed that both D121A and R133H mainly contribute to disease progression via reducing MeCP2 affinity to DNA; (3) GPS v5.0 software indicated that P403S may correlate with altered protein phosphorylation; however, no defective protein interaction has been already documented. (4) The applied computational algorithms failed to explore any informative pathogenic mechanism for the S359Y variant. CONCLUSION: The conducted approach might provide an efficient prediction model for the effect of MECP2 variants that are located in MBD and CTD.

5.
J Neurol Sci ; 383: 188-198, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29246612

ABSTRACT

BACKGROUND: Although misdiagnosis of neuromyelitis optica spectrum disorder (NMOSD) with neuropsychiatric systemic lupus erythematosus (NPSLE) or multiple sclerosis (MS) is not infrequent, reliable biomarkers remains an unmet need. Extracellular microRNAs (miRNAs) represent a worthy avenue to identify biomarkers for differential diagnosis. We aimed to explore the potential role of some selected circulating miRNAs as biomarkers for the differential diagnosis in immune-mediated neuroinflammatory diseases. METHODS: A total of 80 subjects were enrolled in the present study, including 37 patients with MS (relapsing-remitting MS [RRMS; n=18] and secondary progressive MS [SPMS; n=19]), 10 patients with NMOSD and 10 patients with NPSLE as well as 23 healthy subjects. Serum expression levels of three selected miRNAs (miR-145, miR-223 and miR-326) were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Whole blood expression levels of cellular immune response-relevant target genes, including signaling mother against decapentaplegic peptide 3 (SMAD3) and specificity protein 1 (SP1), were also measured using qRT-PCR. RESULTS: In comparison to healthy subjects, only miR-145 and miR-223 were significantly up-regulated in MS patients, whereas, all the analyzed miRNAs revealed insignificant upregulation in NMOSD patients. All the examined miRNAs were significantly down-regulated in NPSLE patients compared to healthy subjects. miR-145, miR-223 and miR-326 expression profile is a promising diagnostic biomarker for MS and NPSLE, but not for NMOSD. This expression profile is capable of differentiating not only among MS, NMOSD and NPSLE, but also between RRMS and SPMS. CONCLUSION: Specific circulating miRNAs expression signature may have the potential to differentially diagnose immune-mediated neuroinflammatory diseases.


Subject(s)
MicroRNAs/blood , Multiple Sclerosis, Chronic Progressive/blood , Multiple Sclerosis, Relapsing-Remitting/blood , Neuromyelitis Optica/blood , Biomarkers/blood , Cohort Studies , Diagnosis, Differential , Disease Progression , Extracellular Space/metabolism , Gene Expression , Humans , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/therapy , Multivariate Analysis , Neuromyelitis Optica/immunology , Neuromyelitis Optica/therapy , Sensitivity and Specificity
6.
Stem Cells Int ; 2016: 1908365, 2016.
Article in English | MEDLINE | ID: mdl-26823668

ABSTRACT

The effect of mesenchymal stem cells (MSCs) on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG). In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...