Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 27(3): 224-239, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37293449

ABSTRACT

Glycosylation is an important protein modification, which influences the physical and chemical properties as well as biological function of these proteins. Large-scale population studies have shown that the levels of various plasma protein N-glycans are associated with many multifactorial human diseases. Observed associations between protein glycosylation levels and human diseases have led to the conclusion that N-glycans can be considered a potential source of biomarkers and therapeutic targets. Although biochemical pathways of glycosylation are well studied, the understanding of the mechanisms underlying general and tissue-specific regulation of these biochemical reactions in vivo is limited. This complicates both the interpretation of the observed associations between protein glycosylation levels and human diseases, and the development of glycan-based biomarkers and therapeutics. By the beginning of the 2010s, high-throughput methods of N-glycome profiling had become available, allowing research into the genetic control of N-glycosylation using quantitative genetics methods, including genome-wide association studies (GWAS). Application of these methods has made it possible to find previously unknown regulators of N-glycosylation and expanded the understanding of the role of N-glycans in the control of multifactorial diseases and human complex traits. The present review considers the current knowledge of the genetic control of variability in the levels of N-glycosylation of plasma proteins in human populations. It briefly describes the most popular physical-chemical methods of N-glycome profiling and the databases that contain genes involved in the biosynthesis of N-glycans. It also reviews the results of studies of environmental and genetic factors contributing to the variability of N-glycans as well as the mapping results of the genomic loci of N-glycans by GWAS. The results of functional in vitro and in silico studies are described. The review summarizes the current progress in human glycogenomics and suggests possible directions for further research.

2.
Vavilovskii Zhurnal Genet Selektsii ; 24(8): 876-884, 2020 Dec.
Article in English | MEDLINE | ID: mdl-35088001

ABSTRACT

Hundreds of genome-wide association studies (GWAS) of human traits are performed each year. The results of GWAS are often published in the form of summary statistics. Information from summary statistics can be used for multiple purposes - from fundamental research in biology and genetics to the search for potential biomarkers and therapeutic targets. While the amount of GWAS summary statistics collected by the scientific community is rapidly increasing, the use of this data is limited by the lack of generally accepted standards. In particular, the researchers who would like to use GWAS summary statistics in their studies have to become aware that the data are scattered across multiple websites, are presented in a variety of formats, and, often, were not quality controlled. Moreover, each available summary statistics analysis tools will ask for data to be presented in their own internal format. To address these issues, we developed GWAS-MAP, a high-throughput platform for aggregating, storing, analyzing, visualizing and providing access to a database of big data that result from region- and genome-wide association studies. The database currently contains information on more than 70 billion associations between genetic variants and human diseases, quantitative traits, and "omics" traits. The GWAS-MAP platform and database can be used for studying the etiology of human diseases, building predictive risk models and finding potential biomarkers and therapeutic interventions. In order to demonstrate a typical application of the platform as an approach for extracting new biological knowledge and establishing mechanistic hypotheses, we analyzed varicose veins, a disease affecting on average every third adult in Russia. The results of analysis confirmed known epidemiologic associations for this disease and led us to propose a hypothesis that increased levels of MICB and CD209 proteins in human plasma may increase susceptibility to varicose veins.

SELECTION OF CITATIONS
SEARCH DETAIL