Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Pharmacol Pharm Sci ; 2023: 5512379, 2023.
Article in English | MEDLINE | ID: mdl-37547166

ABSTRACT

Nausea and vomiting are symptoms associated with a lot of diseases and oral tablets may be unprofitable for patients especially those suffering from nausea and vomiting. Therefore, this study aimed to formulate a new meclizine and pyridoxine combination formula for chewable tablets and provide rapid drug absorption and decrease motion sickness. The new chewable formulation has been prepared to provide fast action, is more acceptable, and could be used for all age categories. Seven trials haves been carried out to prepare to find the suitable one where formula 7 of the chewable gum preparation exhibited good taste and hardness, while the gelatin formulation give an accepted formula after four trials with better taste and good acceptance. The prepared formulations give a dissolution profile of meclizine (95.53-102.8%) and pyridoxine (99.25 ± 115%) and assay (98 + 0.05-99.3 ± 0.8%) for meclizine and (97 ± 0.9-100.0 ± 0.08%) for the pyridoxine in three prepared formulations of chewable tablets. Followed by the evaluation, the formulation and testing them on human volunteers are carried out to confirm their effect to ensure acceptance and fast actions. The finding is promising for preparing a new route of administration of meclizine and pyridoxine combination to be used in the market.

2.
J Chem Inf Model ; 59(5): 1858-1872, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31117526

ABSTRACT

Bioassay-guided isolation protocol was performed on petroleum ether extract of Peperomia blanda (Jacq.) Kunth using column chromatographic techniques. Five compounds were isolated and their structures were elucidated via one-dimensional (1D) and two-dimensional (2D) NMR, gas chromatography mass sectroscopy (GCMS), liquid chromatography mass spectroscopy (LCMS), and ultraviolet (UV) and infrared (IR) analyses. Dindygulerione E (a new compound), and two compounds isolated from P. blanda for the first time-namely, dindygulerione A and flavokawain A-are reported herein. Antimicrobial activity was screened against selected pathogenic microbes, and minimum inhibitory concentrations (MIC) were recorded within the range of 62-250 µg/mL. Assessment of the pharmacotherapeutic potential has also been done for the isolated compounds, using the Prediction of Activity spectra for Substances (PASS) software, and different activities of compounds were predicted. Molecular docking, molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations have proposed the binding affinity of these compounds toward methylthioadenosine phosphorylase enzyme, which may explain their inhibitory actions.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Peperomia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/isolation & purification , Bacteria/drug effects , Bacterial Infections/drug therapy , Humans , Microbial Sensitivity Tests , Models, Molecular , Petroleum/analysis , Plant Extracts/isolation & purification
3.
RSC Adv ; 8(68): 38995-39004, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-35558311

ABSTRACT

A new series of acridine based imidazolium salts was synthesized and evaluated for in vitro cytotoxicity against human cancer cell lines by an MTT assay. The synthesis applied a coupling of imidazoles with 9-chloroacridines, which originated from an Ullmann condensation of a 2-chloro-benzoic acid with an aniline. The target compounds were obtained in high yields. The DPPH assay indicated considerable antioxidant activity for target compounds with simple and short alkyl chains on the imidazole, while increasing chain length and the introduction of an additional π-electron system in most cases reduced the activity. All compounds exhibited low biotoxicity against non-cancerous cell lines, whereas a few compounds showed promising anticancer activity. Unlike for the reference drugs Tamoxifen and Paclitaxel, the anticancer activity of acridine imidazolium ions is specific for only selected cancer types. Reasonable fluorescent behaviour of the products provide potential for visualization of the distribution of active drugs in tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...